Advances in Atomic, Molecular, and Optical Physics -

Advances in Atomic, Molecular, and Optical Physics (eBook)

eBook Download: EPUB
2009 | 1. Auflage
312 Seiten
Elsevier Science (Verlag)
978-0-08-095101-0 (ISBN)
Systemvoraussetzungen
180,83 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This volume continues the tradition of the Advances series. It contains contributions from experts in the field of atomic, molecular, and optical (AMO) physics. The articles contain some review material, but are intended to provide a comprehensive picture of recent important developments in AMO physics. Both theoretical and experimental articles are included in the volume.
• International experts
• Comprehensive articles
• New developments
This volume continues the tradition of the Advances series. It contains contributions from experts in the field of atomic, molecular, and optical (AMO) physics. The articles contain some review material, but are intended to provide a comprehensive picture of recent important developments in AMO physics. Both theoretical and experimental articles are included in the volume. - International experts- Comprehensive articles- New developments

Front Cover 1
Advances in Atomic, Molecular, and Optical Physics 4
Copyright Page 5
Contents 6
Contributors 10
Preface 12
Chapter 1: Driven Ratchets for Cold Atoms 14
1. Introduction 15
2. Ratchets: Generalities 16
2.1. The Flashing Ratchet 16
2.2. The Rocking Ratchet 17
3. Symmetry and Transport in AC-Driven Ratchets 18
3.1. General Considerations 18
3.2. The Periodically Driven Rocking Ratchet 18
3.3. The Quasiperiodically Driven Rocking Ratchet 20
3.4. The Gating Ratchet 21
4. Cold Atom Ratchets 22
4.1. Dissipative Optical Lattices 22
4.2. Rocking Ratchet for Cold Atoms 27
4.3. Rocking Ratchet with Biharmonic Driving 29
4.3.1. Dissipation-Induced Symmetry Breaking 30
4.3.2. Rectification of Fluctuations, Current Reversals, and Resonant Activation in a System with Broken Hamiltonian Symmetry 32
4.4. Multifrequency Driving and Route to Quasiperiodicity 35
4.5. Gating Ratchet 40
5. Outlook 42
References 43
Chapter 2: Quantum Effects in Optomechanical Systems 46
1. Introduction 47
2. Cavity Optomechanics via Radiation-Pressure 51
2.1. Langevin Equations Formalism 52
2.2. Stability Analysis 55
2.3. Covariance Matrix and Logarithmic Negativity 56
3. Ground State Cooling 58
3.1. Feedback Cooling 59
3.1.1. Phase-Quadrature Feedback 59
3.1.2. Generalized Quadrature Feedback 62
3.2. Back-Action Cooling 64
3.3. Readout of the Mechanical Resonator State 66
4. Entanglement Generation with a Single Driven Cavity Mode 69
4.1. Intracavity Optomechanical Entanglement 70
4.2. Entanglement with Output Modes 71
4.3. Optical Entanglement between Sidebands 76
5. Entanglement Generation with Two Driven Cavity Modes 79
5.1. Quantum-Langevin Equations and Stability Conditions 79
5.2. Entanglement of the Output Modes 82
5.2.1. Optomechanical Entanglement 84
5.2.2. Purely Optical Entanglement between Output Modes 86
6. Cavity-Mediated Atom-Mirror Stationary Entanglement 88
7. Conclusions 93
Acknowledgments 94
References 95
Chapter 3: The Semiempirical Deutsch-Maumlrk Formalism: A Versatile Approach for the Calculation of Electron-Impact Ionization Cross Sections of Atoms, Molecules, Ions, and Clusters 100
1. Introduction 102
2. Theoretical Background 104
2.1. The DM Formalism 104
2.2. Other Approaches 106
3. Atoms 110
3.1. Ground-State Atoms 110
3.2. Atoms in Excited States 116
3.2.1. Metastable Rare Gas Atoms 117
3.2.2. He Metastable Ionization 119
3.2.3. Cd and Hg Metastable Ionization 120
4. Molecules, Molecular Radicals, and Clusters 122
4.1. Molecules 123
4.1.1. CF3X (X = H, Br, I) 124
4.1.2. SiCl4 and TiCl4 126
4.2. Free Radicals and Other Unstable Species 129
4.2.1. CH3, CH2, CH 130
4.2.2. CFx and NFx (x = 1–3) 132
4.3. Biomolecules 134
4.3.1. Uracil 134
4.3.2. DNA Bases 135
4.4. Clusters 137
4.4.1. C60 138
4.4.2. C60 and C70 142
5. Ions 145
5.1. Atomic Ions 145
5.1.1. Positive Atomic Ions 145
5.1.2. Negative Atomic Ions (Detachment) 147
5.1.2.1. O- and L- 149
5.2. Molecular Ions 151
5.2.1. Positive Molecular Ions 152
5.2.1.1. C2H2+ 152
5.2.1.2. CO+ and CD+ 156
5.2.2. Negative Molecular Ions (Detachment) 158
5.2.2.1. B2-, BO-, and CN- 158
6. Conclusions and Outlook 160
Acknowledgments 162
References 162
Chapter 4: Physics and Technology of Polarized Electron Scattering from Atoms and Molecules 170
1. Introduction 171
2. Spin-dependent Interactions 172
2.1. Electron Exchange 173
2.2. Spin-Orbit Interactions 174
2.3. Combinations of Spin-Orbit and Exchange Effects 176
2.4. Relevant Scattering Amplitudes: Characterization of Excited States and the Scattered Electron 178
2.5. Theory, Archiving, and Formalism 181
3. Atomic Targets 183
3.1. Exchange Scattering 183
3.1.1. (e,e) and (e,2e) Processes 183
3.1.2. (e,gammae) and (e,gamma2e) Processes 187
3.2. Mott Scattering 191
3.2.1. (e,e) Processes 191
3.2.2. (e,egamma) and (e,2e) Processes 194
3.3. Combinations of Spin-Orbit Coupling and Exchange Effects 194
3.3.1. The Fine-Structure Effect and its Variants 194
3.3.1.1. (e,2e) Experiments 194
3.3.1.2. (e,egamma) Experiments 199
3.3.2. Combinations of Exchange with Mott Scattering 201
3.3.2.1. (e,e) and (e,2e) Experiments 201
3.3.2.2. (e,egamma) Experiments 202
3.3.3. Resonant Effects 206
4. Molecular Targets 207
4.1. Simple Diatomic Molecules 209
4.1.1. The Exchange Interaction in Elastic Scattering 209
4.1.2. Exchange Effects in Inelastic Scattering 213
4.2. Chiral Molecular Targets 218
5. Developments in Polarized Electron Technology 228
5.1. Sources of Polarized Electrons 229
5.1.1. Photemission from GaAs and its Variants 229
5.1.2. Sources Based on Chemi-Ionization of He* 232
5.1.3. Novel Sources of Polarized Electrons 234
5.1.3.1. Field emission tips Field 234
5.1.3.2. Sources involving multiphoton processes 235
5.1.3.3. Spin filters 236
5.2. Polarimetry 240
5.2.1. Mott Polarimetry 240
5.2.2. Optical Polarimetry 247
Acknowledgments 249
References 249
Chapter 5: Multidimensional Electronic and Vibrational Spectroscopy: An Ultrafast Probe of Molecular Relaxation and Reaction Dynamics 262
1. Introduction, Background, and Analogies 263
1.1. Timescales and Orders of Magnitude 264
1.2. The AMO Perspective: Photon Echoes, Ramsey Fringes, and NMR 265
1.3. Diagrammatic Representation of Dynamical Evolution 271
1.3.1 Causality and the Absorptive Lineshape 274
1.4. Molecular Perspective 278
1.4.1 Coupling 278
1.4.2 Line Broadening 280
1.4.3 Orientation 280
1.4.4 Coherence 281
1.4.5 Spectral Diffusion 282
1.4.6 Chemical Exchange 283
1.4.7 Energy Transfer 284
2. Two-dimensional Electronic Spectroscopy 285
2.1. Idiosyncrasies and Technical Challenges of Multidimensional Electronic Spectroscopy 286
2.2. Experimental Implementations 286
2.2.1 Diffractive Optics 287
2.2.2 The Pump-Probe Geometry 289
2.3. Examples of 2D Electronic Spectroscopy Experiments 293
2.3.1 Energy Transfer in Light-Harvesting Systems 293
2.3.2 Vibrational Wavepacket Dynamics in 2DES 296
2.3.3 Understanding 2DES Spectra 298
3. Two-dimensional Vibrational Spectroscopy 300
3.1. Idiosyncrasies of Multidimensional IR Spectroscopy 301
3.2. Experimental Implementation 302
3.3. Examples of Equilibrium 2DIR Spectroscopy 305
3.3.1 The OH Stretch in Water 305
3.3.2 Vibrational Coherence 309
4. Future Directions 318
Acknowledgments 319
Appendix: Derivation of the T2-Dependent Coherence 320
References 323
Chapter 6: Fundamentals and Applications of Spatial Dissipative Solitons in Photonic Devices 336
1. Introduction 337
1.1. Basic Definitions and Scope 337
1.2. Phenomenology of Optical Spatial Dissipative Solitons (SDS) 342
1.3. Basic Equations 344
1.4. Bistability and Multistability of SDS 346
2. Existence, Bifurcation Structure, and Dynamics of Single and Multiple SDS 350
2.1. Patterns, Dissipative Solitons, and Homoclinic Snaking 350
2.2. Homoclinic Snaking 355
2.3. Basic Properties and Dynamics of SDS 359
2.4. Snaking in Other Optical Models 361
2.5. "Tilted" Snaking due to Nonlocal Coupling 367
3. Cavity Soliton Lasers 371
3.1. Attractive Features of a Cavity Soliton Laser and Bistable Laser Schemes 371
3.2. Cavity Solitons in Lasers with Optical Injection 373
3.3. Cavity Solitons Based on Frequency-Selective Feedback 374
3.3.1 Scheme and Mechanism of Bistability 374
3.3.2 Experimental Investigations in VCSELs 376
3.3.3 Theoretical Treatment 381
3.4. Laser Cavity Solitons due to Saturable Absorption 385
3.4.1 General Theory and Early Experiments 385
3.4.2 Modeling and Design of Semiconductor-Based Devices 386
3.4.3 Experimental Realization Using Face-to-Face VCSELs 388
4. Spatial Dissipative Solitons due to Spatially Periodic Modulations 390
4.1. Spatial Dissipative Solitons due to Intracavity Photonic Crystals 390
4.2. Discrete Spatial Dissipative Solitons 398
5. Phase Fronts and Locked Spots 400
6. Applications of Spatial Dissipative Solitons 411
6.1. Positioning of SDS and All-Optical Memories 411
6.2. Exploring the Mobility of SDS 415
6.3. All-Optical Delay Line 416
6.4. Delay Lines in a CSL and Spontaneous Motion of LCS 418
6.5. Soliton Force Microscopy 419
7. Conclusions 422
Acknowledgments 423
References 423
Index 436
Contents of Volumes in this Serial 442

Erscheint lt. Verlag 4.8.2009
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Optik
Technik
ISBN-10 0-08-095101-5 / 0080951015
ISBN-13 978-0-08-095101-0 / 9780080951010
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

eBook Download (2024)
Wiley-VCH (Verlag)
70,99