International Review of Cytology -

International Review of Cytology (eBook)

A Survey of Cell Biology

Kwang W. Jeon (Herausgeber)

eBook Download: PDF | EPUB
2006 | 1. Auflage
320 Seiten
Elsevier Science (Verlag)
978-0-08-047862-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
190,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research. Articles in this volume address new insights into fatty acid modulation of pancreatic beta cell function, drosophila RNA binding proteins, plasticity of pelvic autonomic ganglia and urogenital innervation, vomeronasal vs. olifactory epithelium: cellular basis for human vomeronasal perception, and tight junctions.
International Review of Cytology presents current advances and comprehensive reviews in cell biology - both plant and animal. Authored by some of the foremost scientists in the field, each volume provides up-to-date information and directions for future research. Articles in this volume address new insights into fatty acid modulation of pancreatic beta cell function; drosophila RNA binding proteins; plasticity of pelvic autonomic ganglia and urogenital innervation; vomeronasal vs. olifactory epithelium: cellular basis for human vomeronasal perception; and tight junctions.

Cover 1
Title page 2
Series Editors 3
Copyright 5
Contents 6
Contributors 8
Chapter 1: New Insights into Fatty Acid Modulation of Pancreatic beta-Cell Function 10
I. Introduction 11
II. Metabolism of Glucose and Fatty Acids in the beta Cell 11
A. Glucose Metabolism and Insulin Secretion 11
B. Glucose as Lipid Precursor in beta Cell 13
C. Regulation of Fatty Acid Metabolism in beta Cells 16
III. Impact of Free Fatty Acids and Adiponectin on beta-Cell Metabolism 19
A. Impact of Free Fatty Acids on Glucose Metabolism 19
B. Impact of Adiponectin on Free Fatty Acids and Glucose Metabolism 20
C. Modulation of Insulin Secretion by Free Fatty Acids 21
1. In Vivo Studies 21
2. In Vitro Studies 23
IV. Roles of Free Fatty Acids in Modulation of Cell Signaling Pathways 24
A. Free Fatty Acids-Dependent Molecular Interactions with Regulatory Proteins 24
1. Protein Acylation 24
2. Ion Channels 24
3. Protein Kinase C 25
B. Fatty Acids Modulation of Insulin Signaling 26
1. Insulin Receptor 26
2. Effects of Free Fatty Acids on Insulin Signaling Pathways 29
3. Free Fatty Acids and GPR40 Receptors 31
V. Other Roles of Free Fatty Acids 32
A. Free Fatty Acids and Gene Expression 32
B. Free Fatty Acids and beta-Cell Apoptosis 33
C. Provision of Free Fatty Acids from Leukocytes 35
VI. Concluding Remarks 36
Acknowledgments 37
References 37
Chapter 2: Drosophila RNA Binding Proteins 52
I. Introduction 52
II. Canonical RNA Binding Proteins 53
A. RRM Proteins 53
1. Bruno 71
2. snRNP Proteins 101
3. Squid 102
4. Hrb27C 102
5. Sex-Lethal 103
6. Orb 104
B. KH Domain Proteins 105
1. Bic-C 105
2. Fmr1 106
3. DP1 108
4. PSI 109
5. Mask 110
C. DEAD/DEAH or DExH/D Box Proteins 110
1. Vasa 111
2. Belle 112
3. eIF4AIII 112
D. Double-Stranded RNA Binding Proteins 113
1. Staufen 113
2. Dicer-1 and Dicer-2 114
E. Zinc Finger Proteins 115
1. Nanos 116
III. RNA Binding Proteins That Lack Canonical RNA Binding Motifs 118
A. Pumilio and the Puf Domain 118
B. Smaug and the Smaug Domain 120
C. Bicoid 123
D. Apontic 124
IV. Other RNA Binding Domains and Factors 125
A. RNA Binding Domains 125
B. RNA Localization Factors 126
C. Translation Factors 128
V. Concluding Remarks 129
Acknowledgments 130
References 130
Chapter 3: Plasticity of Pelvic Autonomic Ganglia and Urogenital Innervation 150
I. Overview of the Function and Structure of Pelvic Ganglia 150
II. Structure of Adult Mammalian Pelvic Ganglia 152
A. Interspecies Differences 152
B. Transmitters and Other Neuron-Specific Markers 156
C. Connections with the Other Parts of the Nervous System 159
D. Development of Pelvic Ganglia and Innervation of Urogenital Organs 163
E. Sexual Dimorphism of Pelvic Ganglia and Urogenital Innervation 164
III. Sex Steroid Actions on Pelvic Ganglia and Their Projections 167
A. Types of Sex Steroid Action on Neurons 167
B. Androgens and Pelvic Visceral Innervation 169
C. Estrogens and Pelvic Visceral Innervation 177
IV. Injury of Pelvic Ganglia and Their Projections 180
A. Axotomy 180
B. Deafferentation and Spinal Injury 184
C. Other Clinical Conditions 187
V. Neurotrophic Factors for Adult Pelvic Ganglion’Neurons 189
A. Neurotrophic Factors for Sympathetic Pelvic Neurons 189
B. Neurotrophic Factors for Parasympathetic Pelvic Neurons 192
VI. Concluding Remarks 195
Acknowledgments 195
References 195
Chapter 4: Vomeronasal Versus Olfactory Epithelium: Is There a Cellular Basis for Human Vomeronasal Perception? 218
I. Introduction 219
II. Neuroanatomy of the Vomeronasal System in Vertebrates 220
A. Historical Background 220
B. Definitions 222
C. The Vomeronasal Organ (VNO) in Nonhuman Vertebrates 223
D. Differences Between Olfactory and Vomeronasal Structures 226
E. Vomeronasal Structures During Development and Regression 227
1. Derivatives of the Olfactory Placode: Olfactory Nerve, Vomeronasal Nerve, and LHRH Neurons 227
2. Nervus Terminalis (Cranial Nerve Zero) 232
3. New Insights into the Nature of the Olfactory Placode 233
4. Guidance Molecules 234
5. Regression of the Vomeronasal System 235
F. Vomeronasal Structures in Adult Humans 235
1. Vomeronasal Duct 235
2. Nasopalatine Duct Versus Vomeronasal Duct 243
III. Function of the VNO in Humans 244
A. Immunohistochemistry of the Vomeronasal Epithelium 244
1. Neuronal Markers 244
2. Intermediate Filaments: Cytokeratins and Vimentin 244
3. Lectins 245
4. Endogenous Lectins 246
5. Integrins and Caveolins 247
6. Hyaluronan Receptor CD44, Hyaluronan Binding Protein (HBP), and Ezrin 248
7. Proliferative and Apoptotic Activity 248
8. Aquaporins 248
B. The Site for "Vomeronasal" Chemoreception in Humans 250
1. What Are Human Pheromones? 251
2. What and Where Are the Receptors for Human Pheromone Candidates? Molecular and Genetic Basis for Vomeronasal and Olfactory Receptors 252
3. Electrophysiological and Psychophysical Data on Human ‘‘Vomeronasal’’ Perception 254
IV. Perspectives and Concluding Remarks 255
Acknowledgments 256
References 256
Chapter 5: Tight Junctions: Molecular Architecture and Function 270
I. Introduction 270
II. Molecular Composition 272
III. Junctional Diffusion Barriers 281
A. Selective Paracellular Permeability 281
B. Restriction of Apical/Basolateral Diffusion of Lipids 284
IV. Regulation of Epithelial Polarization and Proliferation 285
A. Epithelial Polarization and Junction Formation 285
B. Epithelial Proliferation and Gene Expression 289
V. Concluding Remarks 293
Acknowledgments 293
References 294
Index 308

Drosophila RNA Binding Proteins


Chiara Gamberi; Oona Johnstone*; Paul Lasko    Department of Biology, McGill University, Montreal, Québec, Canada
* Present address: Department of Systems Biology, Harvard Medical School and Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts.

Abstract


RNA binding proteins are fundamental mediators of gene expression. The use of the model organism Drosophila has helped to elucidate both tissue-specific and ubiquitous functions of RNA binding proteins. These proteins mediate all aspects of the mRNA lifespan including splicing, nucleocytoplasmic transport, localization, stability, translation, and degradation. Most RNA binding proteins fall into several major groups, based on their RNA binding domains. As well, experimental data have revealed several proteins that can bind RNA but lack canonical RNA binding motifs, suggesting the presence of as yet uncharacterized RNA binding domains. Here, we present the major classes of Drosophila RNA binding proteins with special focus on those with functional information.

Key Words

RNA processing

Gene regulation

Translation factors

Translational control

RNA localization

Development

I Introduction


RNA binding proteins constitute an extraordinarily complex class of cellular factors. Many different modalities of RNA interaction exist and more are constantly being discovered. Sequence analysis and the resolution of crystal structures of many RNA binding domains have helped in understanding some of the common regulatory features, but more remains to be learned. Often RNA binding proteins display an assortment of different RNA binding domains, which suggests they may recognize different regulatory signals within their RNA targets. These are often scattered over long distances and RNA–protein interactions combined with protein–protein interactions integrate all the regulatory signals in intricate functional networks. This is particularly evident for the splicing mechanisms, for mRNA translation, and for localization. Not only are regulatory factors fulfilling many cellular roles (and/or acting on multiple targets) but regulation is often redundant.

Here we have grouped the Drosophila RNA binding proteins according to their RNA binding properties. The three most common RNA binding folds are the RNA recognition motif, the KH domain, and the DExD/H box. Other motifs that can interact with RNA, such as the double- stranded RNA binding domain and zinc fingers, are also presented. A few other proteins that lack these well-characterized motifs but that have been shown experimentally to be RNA binding proteins are discussed individually. Tables IV list the names and functions of the RNA binding proteins encoded by the Drosophila genome as annotated by FlyBase; because of its potential relevance for the study of human disease, we also report the most related human sequences. From the analyses of mutant phenotypes, corroborated by molecular analyses, it has become clear that many RNA binding proteins function in multiple pathways, spatially and temporally, within the living organism. Because of this, we also report the available expression data from the Berkeley in situ project, the Yale microarray project, and FlyBase. Spatial and temporal regulation of specific mRNAs is often achieved by regulating RNA localization and translation by means of interactions between RNA-binding proteins and regulatory sequences in the 5′ and 3′ untranslated (UTR) regions of the mRNAs. These processes will be discussed separately in Sections IV.A and IV.B.Table VI reports a list of translation factors and translation modulators.

Table I

RRM Domain Proteinsa

Aly THO complex subunit 4 (THOC4) 1.7e-35; Q86V81 Transcriptional coactivationg Highest levels in early embryose
Nucleic acids transportg
RNA nucleocytoplasmic exporth
B52 Splicing factor, arginine/serine-rich 6 (SFRS6) 5.5e-60; Q13247 Nuclear mRNA splicingh Highest in early embryos
Possible role in chromatin condensationd Also expressed in adult femalese
Expressed throughout developmentd
Boule (Bol) Boule-like protein (BOLL) 1.3e-28; Q8N9W6 Regulation of translationh Spermatogenesish Highest in mid-embryonic phase and adult malese
Adult testisc
Bruno (Bru) CUG triplet repeat RNA-binding protein 1 (CUGBP1) 1e-92; Q92879-3 Highest in embryos and female adults. Also expressed in pupae and male adultse
Bruno-2 (Bru-2) CUG triplet repeat RNA-binding protein 1 (CUGBP1) 5e-67; Q92879-3
Bruno-3 (Bru-3) BRUNO-like 6 RNA-binding protein (BRUNOL6) 3e-91; Q96J87 Protein metabolismg
Cabeza (Caz) FUS glycine rich protein 3e-20 Transcription initiation from Pol II promoterg
Cad89D FAT3 2e-42; Q53AW7
Cap binding protein 20 (Cbp20) Nuclear cap binding protein subunit 2 (NCBP2) 4.3e-60; P52298 Nuclear mRNA splicingg
Putative involvement in nucleocytoplasmic transportg
CG10084 Cutaneous T cell lymphoma tumor antigen se70–2 (C13orf10) 2e-43; Q5U5P5 Highest in embryose
CG10466 RNA binding motif protein, X-linked 2 (RBMX2) 2.1e-51; Q9Y388 mRNA processingg
Proteolysis and peptidolysisg
Zn bindingc
eIF-4B CG10837 Eukaryotic translation initiation factor 4B (eIF4B) 2e-30; P23588 Translation initiationh Highest in early embryose
eIF4E bindingh
CG10881 Eukaryotic translation initiation factor 3 subunit 4 (eIF3S4) 3.2e-60; O75821 Translation initiationg eIF3 complexg Highest in embryos and larvaee
CG10948 Tumor-associated hydroquinone oxidase (COVA1) 2.0e-48; Q16206 Highest in embryos, pupaee.
CG10993 Basal transcriptional activator hABT1 (ABT1) 1.1e-17; Q9ULW3
CG11266 RNA binding region containing protein 2 (RNPC2) 1.0e-124; Q14498 Nuclear mRNA splicingg Highest in embryose
CG11454 RNA binding protein 7 (RBM7) 3.6e-17; Q9Y580 Highest in early embryos, larvae, and prepupaee
CG11505 C-Mpl binding protein 9.0e-61; Q96J85
CG12288 Probable RNA binding protein KIAA0117 6e-18; P42696 Poly(A) bindingg
CG1316 Developmentally regulated RNA binding protein 1 (DRBP1) 2e-70; Q8IUH3
CG11726 n/a
CG13298 Pre-mRNA branch site protein p14 (SF3B14) 1.1e-38; Q9Y3B4 Highest in embryos, larvae, prepupae, and adult femalese
Procephalic ectoderm, VNC, trunk mesoderm (st. 9–10); A and P midgut primordia, lateral cord, E central brain, visceral, and somatic muscle primordia (st. 11–12); gonad, E/L muscle system, E midgut, nerve cord, and CNS (st. 13–16)f
CG1340 Eukaryotic translation initiation factor 4H (eIF-4H/WBSCR1) 3.1e-29; Q15056 Translation initiationg Highest in larvae,...

Erscheint lt. Verlag 20.2.2006
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Biologie Zellbiologie
Technik
ISBN-10 0-08-047862-X / 008047862X
ISBN-13 978-0-08-047862-3 / 9780080478623
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 4,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 14,3 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Volume One

von MD William A. Seeds

eBook Download (2020)
Distributed By Ingram Spark (Verlag)
16,99