Quinones and Quinone Enzymes, Part B -

Quinones and Quinone Enzymes, Part B (eBook)

eBook Download: PDF | EPUB
2004 | 1. Auflage
572 Seiten
Elsevier Science (Verlag)
978-0-08-049720-4 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
155,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Quinones are members of a class of aromatic compounds with two oxygen atoms bonded to the ring as carbonyl groups. This volume covers more clinical aspects of quinines, such as anticancer properties, as well as their role in nutrition and in age-related diseases.

*Mitochondrial Ubiquinone and Reductases
*Anticancer Quinones and Quinone Oxido-Reductases
*Quininone Reductases: Chemoprevention, Nutrition
*Quinones and Age-Related Diseases
Quinones are members of a class of aromatic compounds with two oxygen atoms bonded to the ring as carbonyl groups. This volume covers more clinical aspects of quinines, such as anticancer properties, as well as their role in nutrition and in age-related diseases. Mitochondrial Ubiquinone and Reductases Anticancer Quinones and Quinone Oxido-Reductases Quininone Reductases: Chemoprevention, Nutrition Quinones and Age-Related Diseases

Cover 1
Table of Contents 8
Contributors to Volume 382 12
Preface 16
Volumes in Series 18
Section I: Mitochondrial Ubiquinone and Reductases 39
Chapter 1. Mitochondrial Quinone Reductases: Complex I 41
Chapter 2. Q-cycle Bypass Reactions at the Qo Site of the Cytochrome bc1 (and Related) Complexes 60
Chapter 3. Targeting Coenzyme Q Derivatives to Mitochondria 84
Chapter 4. The Mitochondrial Interplay of Ubiquinol and Nitric Oxide in Endotoxemia 106
Chapter 5. Mitochondrial Respiratory Chain Dysfunction Caused by Coenzyme Q Deficiency 120
Chapter 6. Coenzyme Q Cytoprotective Mechanisms 128
Chapter 7. Dietary Coenzyme Q10 and Mitochondrial Status 144
Section II: Anticancer Quinones and Quinone Oxidoreductases 152
Chapter 8. NAD(P)H: Quinone Oxidoreductase 1 (NQO1, DT-Diaphorase), Functions and Pharmacogenetics 154
Chapter 9. Structure and Mechanism of NAD[P]H: Quinone Acceptor Oxidoreductases (NQO) 183
Chapter 10. Diaziridinylbenzoquinones 213
Chapter 11. Quinone Reductase–Mediated Nitro-Reduction: Clinical Applications 233
Chapter 12. Bioactivation and Resistance to Mitomycin C 260
Chapter 13. NAD(P)H:Quinone Oxidoreductase 1 Expression, Hydrogen Peroxide Levels, and Growth Phase in HeLa Cells 273
Chapter 14. The ‘‘Prochaska’’ Microtiter Plate Bioassay for Inducers of NQO1 282
Chapter 15. Structure-Activity Relationships in Two-Electron Reduction of Quinones 297
Chapter 16. p53-Dependent Apoptosis and NAD(P)H:Quinone Oxidoreductase 1 317
Chapter 17. The Role of Endogenous Catechol Quinones in the Initiation of Cancer and Neurodegenerative Diseases 332
Chapter 18. Induction of NQO1 in Cancer Cells 359
Section III: Quinone Reductases: Chemoprevention and Nutrition 392
Chapter 19. Role of Nicotinamide Quinone Oxidoreductase 1 (NQO1) in Protection Against Toxicity of Electrophiles and Reactive Oxygen Intermediates 394
Chapter 20. Activation and Detoxification of Naphthoquinones by NAD(P)H:Quinone Oxidoreductase 403
Chapter 21. Induction of Quinone Reductase as a Primary Screen for Natural Product Anticarcinogens 419
Chapter 22. Chemoprevention by 1,2-Dithiole-3-Thiones Through Induction of NQO1 and Other Phase 2 Enzymes 453
Chapter 23. Chemical Structures of Inducers of Nicotinamide Quinone Oxidoreductase 1 (NQO1) 462
Chapter 24. Induction of Phase II Enzymes by Aliphatic Sulfides Derived from Garlic and Onions: An Overview 488
Chapter 25. Upregulation of Quinone Reductase by Glucosinolate Hydrolysis Products from Dietary Broccoli 496
Section IV: Quinones and Age-Related Diseases 510
Chapter 26. Therapeutic Effects of Coenzyme Q10 in Neurodegenerative Diseases 512
Chapter 27. Neuroprotective Actions of Coenzyme Q10 in Parkinson’s Disease 527
Author Index 550
Subject Index 600

[1]

Mitochondrial Quinone Reductases: Complex I


Giorgio Lenaz; Romana Fato; Alessandra Baracca; Maria Luisa Genova

Publisher Summary


This chapter provides an overview of mitochondrial quinone reductases complex I. The NADH:quinone (Coenzyme Q, CoQ, ubiquinone) oxidoreductase (Complex I) is the most complicated enzyme of the respiratory chain in mitochondria and aerobic bacteria. Mitochondrial complex I is a multisubunit enzyme that uses the energy associated to NADH oxidation by CoQ to pump hydrogen ions across the inner membrane, thus significantly contributing to the formation of an electrochemical proton gradient and consequently to the efficiency of the oxidative phosphorylation process. Isolation of Complex I in an active form is not an easy task, so the best way to assay its activity is to study the enzyme in situ, in mitochondrial membranes or in submitochondrial particles. From the functional point of view, Complex I activity can be isolated from the other respiratory complexes by the action of specific inhibitors such as antimycin A and mucidin for complex III and cyanide for complex IV. The chapter provides the details of assay of redox activities of complex. An overview of NADH-CoQ reductase is presented. The chapter elaborates the determination of NADH dehydrogenase and explains the metabolic flux control and other activities of complex I.

Introduction


The NADH:quinone (Coenzyme Q, CoQ, ubiquinone) oxidoreductase (Complex I) is the most complicated enzyme of the respiratory chain in mitochondria and aerobic bacteria.13 Mitochondrial Complex I is a multisubunit enzyme that uses the energy associated to NADH oxidation by CoQ to pump hydrogen ions across the inner membrane, thus significantly contributing to the formation of an electrochemical proton gradient (ΔμH+) and consequently to the efficiency of the oxidative phosphorylation process. The number of protons pumped by Complex I is estimated to be 2 to 5 (probably 4) H+/2e−.48

In spite of recent improvements of our knowledge on both structural and functional properties of Complex I,911 the atomic structure and the detailed reaction mechanism of the enzyme are still unknown: it is the only enzyme of the membrane-bound respiratory chain to remain a “L shaped black box.”12 The reason for this lack of information is principally due to the complexity of this enzyme: in fact, the bovine enzyme consists of 46 different polypeptides13,14 with different prosthetic groups: an FMN, 8 to 9 Fe-S clusters and one or more molecules of quinones. The need to clarify the molecular mechanism of the enzyme complex is strongly supported by different research fields. Besides representing a major target of bioenergetics, since many neurodegenerative disorders as well as the aging process have been associated with Complex I deficiency,1517 knowledge of the enzyme structure-function relationship is essential for better understanding of these physiological-pathological dysfunctions.

Therefore the availability of reliable methods allowing the study of the Complex I activity is very important to investigate the mechanism of electron transfer and proton translocation by the enzyme and to assess cell bioenergetic damage occurring in mitochondrial diseases and aging.

Assay of Redox Activities of Complex I


NADH-CoQ Reductase


Investigation of electron transfer in the complex along its redox groups is very difficult to perform. Moreover, isolation of Complex I in an active form is not an easy task,18 so the best way to assay its activity is to study the enzyme in situ, in mitochondrial membranes or in submitochondrial particles. From the functional point of view, Complex I activity can be isolated from the other respiratory complexes by the action of specific inhibitors such as antimycin A and mucidin for Complex III (acting respectively on center “i” and “o”) and cyanide for Complex IV. Myxothiazol should be avoided, since it also inhibits Complex I.19 Difficulties in assaying Complex I activity may arise from a limited permeability of its substrates; in particular, beef heart mitochondria, which are the choice material for Complex I studies, must be permabilized to NADH, and this may be achieved through freezing and thawing cycles (from 1 to 3 cycles). On the other hand, the complex uses Coenzyme Q10 as physiological electron acceptor; however, this molecule is too hydrophobic and cannot be used as exogenous substrate. For this reason Complex I activity is normally assayed by using short-chain analogs of CoQ10: the most widely used are CoQ1 (with only one isoprenoid unit in the side chain) and decylubiquinone (DB) with a 10-carbon-atom linear saturated side chain.20,21 This lack of a suitable assay method with endogenous substrates makes Complex I activity measurements considerably hampered. It has to be borne in mind that the activity of Complex I with these exogenous acceptors may be strongly underestimated.20,22,23

In Bovine Heart Mitochondria and Submitochondrial Particles

Beef heart mitochondria (BHM) are obtained by a large-scale procedure24 and submitochondrial particles (SMP) by sonic irradiation of frozen and thawed mitochondria.25 SMP obtained by this method are essentially broken membrane fragments26; alternatively, coupled closed particles (electron transfer particles or ETPH) are prepared by the method of Hansen and Smith27 or EDTA-particles by the method of Lee and Ernster.28

All preparations are kept frozen at −80° at a stock concentration ranging between 40 and 60 mg/ml of protein detected by the biuret method by Gornall et al.29 BHM are frozen and thawed two or three times before use, while SMP are used after thawing once: under these conditions the permeability barrier for NADH is completely lost, as demonstrated by the lack of further stimulation by detergents.

NADH-CoQ reductase is assayed essentially as described by Yagi30 and modified by Degli Esposti et al.19 and Estornell et al.21

Reagents

Buffer, 50 mM KCl, 10 mM Tris-HCl, 1 mM EDTA, pH 7.4

NADH, 30 mM freshly prepared solution in water

Antimycin A, 2 mM in ethanol

KCN, 2 mM in buffer solution

All quinones used are kept as 20 to 30 mM ethanol stock solutions

Rotenone, 2 mM in ethanol

Procedure

KCN and Antimycin A are added directly to the buffer to a final concentration of 2 mM and 2 μM, respectively; because of the alkaline hydrolysis of CN−, it is necessary to adjust the pH to 7.4 to 7.5 with HCl. KCN and Antimycin A are added to avoid the electron flow through the cytochrome system (complexes III and IV).

The reaction is started by the addition of 10 to 20 μg/ml of mitochondrial protein (either BHM or SMP) and different amounts of the quinone analogs used as external electron acceptor and is followed spectrophotometrically by the decrease of absorbance at 340 minus 380 nm of a saturating amount of NADH (75 μM) in a double wavelength spectrophotometer (Jasco V-550 equipped with a double wavelength accessory and a rapid mixing apparatus) with an extinction coefficient of 3.5 mM−1 cm−1. This extinction coefficient was directly calculated, taking in account that, in the double wavelength spectrophotometer used, the light transfer is due to an optical fiber device; the extinction coefficient may vary with other spectrophotometers.

We have used this method to study the kinetic parameters of different short chain quinone homologs such as CoQ0, CoQ1, CoQ2, CoQ3 and analogs having straight saturated chain such as 6-pentyl and 6-decylubiquinones (respectively PB and DB).21,31 The results obtained are listed in Table I.

Table I

Kinetic Constants for NADH-CoQ Reductase in Bovine Heart SMP by Using Various Acceptorsa

Quinone homologs or analogs Vmaxb (μmol min−1 mg−1) KmbM)
CoQ0 0.18 65
CoQ1 0.98 ± 0.40 20.1 ± 5.4
CoQ2 0.29 1.3
CoQ3 0.17 0.8
PB 0.93 21
DB 0.58 ± 0.15 1.8 ± 0.8

a R. Fato, E. Estornell, S. Di Bernardo, F. Pallotti, G. Parenti Castelli, and G. Lenaz, Biochemistry35, 2705 (1996).

b Data for CoQ1 and DB are means ± SD of six different titrations. All other data are means of two titrations.

As shown in the table, different quinones elicited different NADH-CoQ reductase activity, and this is principally due to the capability of quinone analogs to interact with the physiological active site of Complex I. The widely used method to test this capability is to measure the effect of a specific Complex I inhibitor such as rotenone: NADH-CoQ1, -CoQ2, -CoQ3, -DB, -PB are at least 90% sensitive to rotenone (2 μM), suggesting that all...

Erscheint lt. Verlag 8.3.2004
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizinische Fachgebiete Innere Medizin Endokrinologie
Naturwissenschaften Biologie Biochemie
Naturwissenschaften Physik / Astronomie Angewandte Physik
Technik
ISBN-10 0-08-049720-9 / 0080497209
ISBN-13 978-0-08-049720-4 / 9780080497204
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 6,0 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 20,9 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Das Wichtigste für Ärztinnen und Ärzte aller Fachrichtungen

von Ulrich Alfons Müller; Günther Egidi …

eBook Download (2021)
Urban & Fischer Verlag - Fachbücher
36,99