Advances in Immunology -

Advances in Immunology (eBook)

Frank J. Dixon (Herausgeber)

eBook Download: PDF | EPUB
2001 | 1. Auflage
340 Seiten
Elsevier Science (Verlag)
978-0-08-049363-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
155,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Immunology presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that constitue immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for future research.

Immunology is vital to the understanding of infection and disease. Application of this information may lead to resistance and cures for higher animals and humans.
Advances in Immunology presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that constitue immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for future research.Immunology is vital to the understanding of infection and disease. Application of this information may lead to resistance and cures for higher animals and humans.

Front Cover 1
Advanced in Immunology 4
Copyright Page 5
Contents 6
Contributors 10
Chapter 1. Toll-like Receptors and Innate Immunity 12
I. Introduction 12
II. Toll Receptors in Drosophila Development 13
III. Toll Receptors in Innate Immunity of Drosophila 13
IV. Mammalian IL-1R-Signaling Pathway. Its Similarity with Drosophila Toll Signaling 15
V. Discovery of Toll-like Receptors in Mammals 18
VI. LPS and Its Binding Molecules 20
VII. Intracellular Events Following LPS Stimulation 23
VIII. Nuclear Factors Activated by LPS 29
IX. TLR4 and LPS Signaling 32
X. Role of MyD88 in LPS Signaling 33
XI. MyD88-Dependent and -Independent Pathways in LPS Signaling 34
XII. LPS Internalization 35
XIII. Species Differences in LPS Response 36
XIV. Taxol and LPS 37
XV. LPS Tolerance 38
XVI. TLR2 and LPS Signaling 40
XVII. Recognition of Microbial Cell Wall Components by TLRs 41
XVIII. Toll-like Receptors and Host Resistance to Microbial Infection 45
XIX. Conclusion 46
References 47
Chapter 2. Chemokines in Immunity 68
I. Introduction 68
II. Chemokine Superfamily 70
III. Migratory Properties of Lymphocytes and Dendritic Cells 84
IV. Primary Lymphoid Organs and Chemokines 85
V. Secondary Lymphoid Organs and Chemokines 88
VI. Effector/Memory Cells and Chemokines 91
VII. Dendritic Cells and Chemokines 99
VIII. Concluding Remarks 101
References 103
Chapter 3. Attractions and Migrations of Lymphoid Cells in the Organization of Humoral Immune Responses 122
I. Introduction 122
II. Structures of Chemokines and Their Receptors 125
III. Rules to Understand Receptor–Ligand Interaction and Migration in Vivo 126
IV. The Generation of Cells Involved in the Humoral Defense against Foreign Invaders 128
V. The Population of Secondary Lymphoid Organs by Lymphoid Cells 134
VI. Compartmental Homing within Secondary Lymphoid Organs 141
VII. Cellular Traffic Leading to a Humoral Immune Response. Finding the Right Partner 147
VIII. Migration of Effector and Memory T and B Cells 154
IX. Possible Clinical Relevance of the ABCD Chemokines 158
X. Future Perspectives 162
References 164
Chapter 4. Factors and Forces Controlling V(D)J Recombination 180
I. Introduction 180
II. Basic Features of V(D)J Recombination 181
III. Forces Controlling Chromatin Structure and Accessibility 190
IV. Cis-Acting Elements and the Assembly of Antigen Receptor Loci 204
V. The Factors 212
VI. The Two Substrate Problem 220
VII. Models 224
References 227
Chapter 5. T Cell Effector Subsets. Extending the Th1/Th2 Paradigm 244
I. Introduction 244
II. T Cell Effector Subsets 244
III. What Determines Effector T Cell Differentiation? 250
IV. Transcription Factors for T Cell Differentiation 251
V. The Link between Chemokine Receptors and T Cell Effector Function 253
VI. Cell Surface and Costimulatory Molecules That Distinguish T Cell Effector Functions 259
VII. Microarrays for the Identification of T Cell Subset Expressed Genes 261
VIII. Conclusions 264
References 264
Chapter 6. MHC-Restricted T Cell Responses against Posttranslationally Modified Peptide Antigens 278
I. Introduction 278
II. Posttranslational Modifications of Proteins 279
III. Posttranslational Modifications and Antigen Processing 281
IV. Posttranslational Modifications and MHC Binding 283
V. Posttranslational Modifications and T Cell Recognition 288
VI. Posttranslationally Modified Peptide Antigens. Are They Immunologically Relevant? 295
References 297
Chapter 7. Gastrointestinal Eosinophils in Health and Disease 302
I. Introduction 302
II. Gastrointestinal Eosinophils in Healthy States 304
III. Gastrointestinal Eosinophils in Disease States 310
IV. Experimental Dissection of Eosinophilic Gastrointestinal Inflammation 313
V. Function of Eosinophils 325
VI. Summary and Concluding Remarks 328
References 331
Index 340

Toll-like Receptors and Innate Immunity


Shizuo Akirasakira@biken.osaka-u.ac.jp    Department of Host Defense, Research Institute for Microbial Diseases, Osaka University; CREST of Japan Science and Technology Corporation, Osaka, Japan 565-0871

I Introduction


Immunity in higher organisms can be broadly categorized into adaptive immunity and innate immunity. Adaptive immunity is mediated by clonally distributed T and B lymphocytes which provide immunological specificity and memory. In contrast, innate immunity is mediated by the action of other cells such as macrophages and neutrophils, and traditionally has been characterized as nonspecific. However, recent findings have shown that innate immunity has some capacity for specific recognition. For example, insects, which lack the high level of immune specificity and memory characteristics of vertebrates, can nevertheless combat the invasion of microbes rapidly and efficiently by producing specific antimicrobial peptides. The synthesis of these specific antimicrobial peptides is triggered by the differential activation of different Toll family receptors present on the cell surface. More recently, various studies have demonstrated that many aspects of innate immune systems are shared between insects and mammals, and indeed have shown that such systems play a crucial role in the immune response in higher organisms such as mammals (Hoffmann et al., 1999). Microbial invasion in mammals is first handled by the innate immune system, which is designed to control and eventually resolve the infection. The cells of this system are not only responsible for the first-line mechanism of bacterial clearance, but also play an instructive role in adaptive immunity through the action of soluble factors or costimulatory signals (Fearon and Locksley, 1996). Janeway (1992) has hypothesized that recognition of a pathogen is mediated by a set of germline-encoded receptors that are referred to as pattern-recognition receptors (PRRs). These receptors would recognize conserved molecular patterns (pathogen-associated molecular patterns [PAMPs]) shared by large groups of microorganisms. Recognition of these patterns would allow the innate immune system not only to detect the presence of an infectious microbe, but also to determine the type of the infecting pathogen. Recently, the family of Toll-like receptors has been found to be present in mammals and to function in a manner similar to the PRRs envisioned by Janeway (1992). I will discuss the role of a group of the Toll receptors, which are phylogenically conserved mediators of innate immunity essential for microbial recognition.

II Toll Receptors in Drosophila Development


Toll was originally identified as a transmembrane receptor that is critical to the determination of dorsoventral polarity in Drosophila embryo (Anderson et al., 1985; Belvin and Anderson, 1996). Toll is characterized by the presence of a leucine-rich repeat (LRR) in the extracellular domain and homology within the cytoplasmic domain to the interleukin-1 receptor (IL-1R) cytoplasmic domain. Stimulation of Toll activates the Rel family transcription factor, Dorsal, by inducing the degradation of cactus, via a process that involves the adaptor protein Tube and the serine-threonine protein kinase Pelle.

Toll is expressed over the entire surface of the embryo, but is activated only in the ventral region during early embryogenesis by interaction with Spatzel, a specially restricted, extracellular ligand. Spatzel is a member of the cysteine-knot family of growth factors and cytokine-like proteins (Mizuguchi et al., 1998). Production of Spatzel requires activation by an extracellular serine protease cascade that is confined to the ventral side of the embryo. Spatzel is cleaved by the protease, Easter, which in turn is activated by another protease known as Snake (Anderson, 1998). This activation of the Spatzel–Toll pathway in the ventral region results in the generation of a nuclear gradient of Dorsal along the dorsovental axis of the embryo. This gradient regulates the localized expression of a set of zygotic genes that in turn specify ventral and dorsal fate. Certain dominant mutant alleles of Toll encode proteins that behave as partially ligand-independent receptors, and embyos expressing these proteins become ventralized. Toll is required for proper motoneuron and muscle specification in the late embryonic stage.

III Toll Receptors in Innate Immunity of Drosophila


The Toll pathway also controls the production of potent antifungal peptides in the adult fly. In microbial infection of Drosophila, a battery of antimicrobial peptides are rapidly synthesized in the fat body, a functional equivalent of the liver, and secreted into the hemolymph. Antimicrobial peptides are categorized into two groups: one group consists of several antibacterial peptides including cecropin, diptericin, drosocin, attacin, and insect defensin, and the other group consists of the major antifungal peptide, drosomycin (Hultmark, 1993; Hoffmann et al., 1996). The genes encoding these antibacterial and antifungal peptides are differentially expressed following infection by distinct microorganisms. Drosophila that are infected by insect-pathogenic fungi produce only peptides with antifungal activities as a result of the selective activation of the Toll pathway. Toll-deficient flies are defective in the induction of Drosomycin, and are poorly resistant to fungal infection (Lemaitre et al., 1996). The Toll pathway is also involved in the control of some of the antibacterial peptide genes (e.g., cecropin and attacin). However, the role of Dorsal in regulating the antimicrobial response is unclear, in contrast to its well-established and essential role in the regulation of the dorsoventral target genes. Indeed, the drosomycin gene remains fully inducible following immune challenge in Dorsal-deficient mutants, indicating that the control of antimicrobial peptide genes is redundant and that other Rel proteins can substitute for Dorsal in Dorsal-deficient mutants. In addition to Dorsal, Drosophila expresses two other Rel family proteins, Dif (for Dorsal-related immunity factor) and Relish (Ip et al., 1993; Dushay et al., 1996). Recently, Dif has been shown to act downstream in the Toll signaling pathway in induction of drosomycin (Meng et al., 1999; Manfruelli et al., 1999; Han and Ip, 1999; Rutschmann et al., 2000). Relish mutants are completely defective for the induction of all antimicrobial peptides and are more susceptible to fungal infection than wild-type Drosophila. Taken together, these observations indicate that Dorsal is essential to the regulation of the dorsoventral target genes, whereas the two other Rel transcription factors Dif and Relish apparently act downstream in the Toll signaling pathway for the induction of drosomycin.

Another Drosophila gene, 18-wheeler (18 W), exhibits homology to Toll, having both the intracellular IL-1R-like domain and the extracellular LRRs. 18 W is required for Drosophila morphogenesis and is thought to function as a cell adhesion or receptor molecule that faciliates cell movements. 18 W has also been shown to be involved in the host defense in Drosophila, since embryos carrying a mutated 18 W gene are compromised in their antibacterial response (Williams et al., 1997). In 18 W mutants, induction of attacin is reduced 95% and cecropin is reduced 65%, while diptericin expression is only slightly affected. However, drosomycin expression seems completely unaffected in 18 W mutants. Nuclear localization of Dif is also blocked, whereas that of dorsal is normal. These results would suggest that 18 W activates Dif, which in turn mediates the induction of attacin. However, other studies show that attacin induction is not affected by the absence of Dif. Thus, induction of attacin by the 18 W pathway may involve another Rel transcription factor, possibly Relish, that can compensate for the loss of Dif.

The imd mutants exhibit a severely reduced survival rate when injected with E. coli, compared to Toll deficient or wild-type flies. The mutants are also completely defective in the synthesis of antibacterial peptides, including cecropin, attacin, and diptericin, following challenge by pathogens (Lemaitre et al., 1995a). On the other hand, these mutants are more or less normal with respect to induction of the antifungal peptide gene drosomycin, and accordingly, their resistance to fungal infection is similar to that of wild-type flies. Recently, Relish was found to be a key factor in the induction of both antibacterial and antifungal peptides (Hedengren et al., 1999). Diptericin induction shows an absolute requirement for the Relish gene, suggesting that Relish is likely to be part of the imd pathway. Thus, the genes encoding the various antimicrobial peptides seem to be controlled by different combinations of Rel-transcription factors that, in turn, are activated via distinct signaling cascades elicited by specific microbial populations.

IV Mammalian IL-1R-Signaling Pathway: Its Similarity with Drosophila Toll Signaling


Recently, remarkable advances have been made in the field of IL-1 signal transduction (Fig. 1). The IL-1R...

Erscheint lt. Verlag 5.7.2001
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Medizinische Fachgebiete
Studium Querschnittsbereiche Infektiologie / Immunologie
Naturwissenschaften Biologie
Technik
ISBN-10 0-08-049363-7 / 0080493637
ISBN-13 978-0-08-049363-3 / 9780080493633
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 4,7 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 5,8 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Antibiotika, Virostatika, Antimykotika, Antiparasitäre Wirkstoffe

von Hans-Reinhard Brodt; Achim Hörauf; Michael Kresken …

eBook Download (2023)
Thieme (Verlag)
164,99
Mit den neuen Preisen vom 1.10.2023

von Peter M. Hermanns; Enrico Schwartz; Katharina von Pannwitz

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
59,99