Advances in Immunology -

Advances in Immunology (eBook)

Frederick W. Alt (Herausgeber)

eBook Download: PDF | EPUB
2006 | 1. Auflage
344 Seiten
Elsevier Science (Verlag)
978-0-08-046915-7 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
155,00 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Advances in Immunology, a long established and highly respected publication, presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that comprise immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for future research.
Advances in Immunology, a long established and highly respected publication, presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that comprise immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for future research.

Front Cover 1
Advances in Immunology 3
Copyright Page 4
Contents 6
Contributors 10
Chapter 1: Systemic Lupus Erythematosus: Multiple Immunological Phenotypes in a Complex Genetic Disease 13
Abstract 13
1. Introduction 14
2. Immunological Alterations in SLE 17
3. Genetics of SLE Susceptibility in Humans 34
4. Murine Models of SLE 40
5. Modeling Disease Development 52
References 57
Chapter 2: Avian Models with Spontaneous Autoimmune Diseases 83
Abstract 83
1. Introduction 84
2. Chicken Genomics and Its Application to the Genetic Dissection of Autoimmune Disorders 87
3. The OS Chicken: Model for Human Hashimoto Disease 95
4. The UCD-200 Line of Chickens: A Model for Human Systemic Sclerosis 104
5. The SL Chicken Model for Human Autoimmune Vitiligo 114
6. Conclusions and Outlook 120
Acknowledgments 120
References 120
Chapter 3: Functional Dynamics of Naturally Occurring Regulatory T Cells in Health and Autoimmunity 131
Abstract 131
1. Introduction 132
2. Phenotype of CD4+CD25+ nTreg Cells 134
3. Factors Regulating the Expansion and Specificity of nTreg Cells 138
4. Innate and Adaptive Inflammatory Signals Dictating the Function of nTreg Cells 141
5. Growth Factor-Mediated Control of nTreg Cell Development, Function, and Homeostasis 146
6. Control of Autoimmune Responses by nTreg Cells 150
7. Summary and Conclusions 157
Acknowledgments 158
References 158
Chapter 4: BTLA and HVEM Cross Talk Regulates Inhibition and Costimulation 169
Abstract 169
1. Overview of BTLA and HVEM Ligand Discovery 170
2. Structural Characterization of BTLA Bound to HVEM 176
3. Viral Modulators of the HVEM-BTLA Pathway 176
4. Expression and Regulation of BTLA, LIGHT, and HVEM on T Cells and APCs 177
5. Mechanisms of the CD28 Family Inhibitory Receptors 179
6. Consequences of HVEM Ligation 185
7. BTLA and HVEM in Models of Disease 188
8. Conclusions 190
References 191
Chapter 5: The Human T Cell Response to Melanoma Antigens 199
Abstract 199
1. Introduction 200
2. Melanoma Antigens 200
3. Measurement of Antigen-Specific T Cell Responses 202
4. Naturally Acquired Tumor Antigen-Specific T Cell Responses 208
5. Vaccine-Induced T Cell Responses 214
6. Regulation of Tumor Antigen-Specific T Cell Responses 218
7. Conclusions 219
Acknowledgments 221
References 221
Chapter 6: Antigen Presentation and the Ubiquitin-Proteasome System in Host-Pathogen Interactions 237
Abstract 238
1. Host-Pathogen Interactions 239
2. Manipulation of the Host Response by Pathogens: Some General Considerations 241
3. Antigen Presentation 242
4. Class I MHC Antigen Presentation 242
5. Pathogen Recognition by CD8+ T Cells and NK Cells 244
6. Class II MHC Antigen Presentation 245
7. Ubiquitin-Proteasome System 246
8. The Ubiquitin Conjugation Cascade 246
9. Ubiquitin Ligases 248
10. Ubiquitin Chains and Ubiquitin-Like Modifiers (Ubls) 249
11. Deubiquitinating Enzymes 251
12. The Proteasome 251
13. ER Quality Control and Degradation 252
14. ERAD Substrate Recognition 253
15. ERAD E3 Ligases 255
16. Mammalian ERAD E3s 256
17. The Elusive Dislocon 259
18. Driving Dislocation and the Ub-Binding Route to the Proteasome 259
19. Peptide N-Glycanase 261
20. Viral Interference with Class I MHC Antigen Presentation 262
21. Human Cytomegalovirus 263
22. HCMV Interference with Class I MHC Antigen Presentation 263
23. Dislocation from the ER: HCMV US11 and US2 266
24. Signal Peptide Peptidase Is Required for Dislocation from the ER 267
25. SPP and Generation of HLA-E Epitopes 268
26. SPP and Processing of the Hepatitis C Virus Core Protein 268
27. SPP and Calmodulin Signaling 269
28. SPP Peptide Peptidase and Development 269
29. SPP and ER Quality Control 270
30. Three Routes of Pathogen-Mediated ER Protein Disposal 273
31. Pathogen Interference with Class II MHC Antigen Presentation 276
32. Inhibition of Recognition at the Surface of the APC 276
33. Class II MHC Downregulation from the Surface of the APC 277
34. CD4 Downregulation from the Surface of the CD4+ T Cell 278
35. Pathogen Manipulation of the Ubiquitin-Proteasome System 281
36. Interference with Proteasomal Proteolysis 282
37. Control of Infection 283
38. Virus Budding 284
39. Bacterial Chromosome Integration 285
40. ISGylation and deISGylation 286
41. Control of Inflammation 287
42. Posttranscriptional Gene Silencing 287
43. Downregulation of Cell Surface Receptors by Pathogen-Encoded E3s 288
44. Programmed Cell Death in Plants 289
45. Cytokine Responses 289
46. Pathogen-Encoded DUBs 290
47. Conclusions and Future Directions 292
Acknowledgments 292
References 292
Index 319
Contents of Recent Volumes 337

Systemic Lupus Erythematosus: Multiple Immunological Phenotypes in a Complex Genetic Disease


Anna‐Marie Fairhurst*; Amy E. Wandstrat; Edward K. Wakeland*    * Center for Immunology, The University of Texas Southwestern Medical Center, Dallas, Texas
† Rheumatic Diseases Division, The University of Texas Southwestern Medical Center, Dallas, Texas

Abstract


Systemic lupus erythematosus (SLE) is a complex polygenic autoimmune disease characterized by the presence of anti‐nuclear autoantibodies (ANAs) that are often detectable years prior to the onset of clinical disease. The disease is associated with a chronic activation of the immune system, with the most severe forms progressing to inflammatory damage that can impact multiple organ systems in afflicted individuals. Current therapeutic strategies poorly control disease manifestations and are generally immunosuppressive. Recent studies in human patient populations and animal models have associated elements of the innate immune system and abnormalities in the immature B lymphocyte receptor repertoires with disease initiation. A variety of cytokines, most notably type I interferons, play important roles in disease pathogenesis and effector mechanisms. The genetic basis for disease susceptibility is complex, and analyses in humans and mice have identified multiple susceptibility loci, several of which are located in genomic regions that are syntenic between humans and mice. The complexities of the genetic interactions that mediate lupus have been investigated in murine model systems by characterizing the progressive development of disease in strains expressing various combinations of susceptibility alleles. These analyses indicate that genetic epistasis dramatically impact disease development and support the feasibility of identifying molecular pathways that can suppress disease progression without completely impairing normal immune function.

1 Introduction


Systemic lupus erythematosus (SLE) is a chronic autoimmune disease that is classically associated with the production of pathogenic autoantibodies to a spectrum of nuclear antigens. SLE usually presents with a diverse array of clinical symptoms, which often reflect the consequences of injury to multiple organ systems. This clinical heterogeneity results from tissue damage targeted by autoantibody and inflammatory processes initiated as a consequence of deposition of complement‐fixing immune complexes (ICs). Severe complications, which ultimately develop in about 50% of lupus patients, can manifest as a variety of clinical problems, including nephritis, central nervous system vasculitis, pulmonary hypertension, interstitial lung disease, and stroke. Current treatments for SLE involve a variety of immunosuppressive drug therapies, including hydroxychloroquine, steroids, and cytotoxic drugs. Although these therapies allow management of disease severity for many patients, a variety of deleterious drug side effects and therapy‐resistant disease symptoms significantly diminish the quality of life for many SLE patients.

The extensive clinical heterogeneity exhibited by this disease complicates diagnosis and has led to the development of guidelines requiring that patients fulfill any 4 of 11 criteria to be diagnosed with SLE (Hochberg, 1997; Tan et al., 1982). Currently, more than 400,000 individuals in the United States are diagnosed with SLE, and possibly an equal number fulfill 2 or 3 of the 11 criteria but are not diagnosed with SLE. Further, the incidence of disease appears to have increased threefold over the last 40 years, possibly due to improvements in the detection of mild disease (Lawrence et al., 1998; Uramoto et al., 1999). There is a significant variation in both the incidence and severity of disease among ethnic groups, with African Americans, African Caribbeans, Hispanic Americans, and Asians all having a higher incidence and greater disease severity than European and American Caucasians (Hochberg, 1985; Jimenez et al., 2003; Lawrence et al., 1989; Serdula and Rhoads, 1979; Vilar and Sato, 2002). The majority of patients with SLE have disease onset between the ages of 16–55.

Although the factors responsible for the initiation of SLE are poorly understood, genetic predisposition is firmly established as a key element in susceptibility. However, despite over a decade of intensive investigations of the genetic basis for SLE susceptibility in humans, very few causative disease alleles have been clearly identified. This is due to a variety of factors, both technical and biological, which have impacted the successful application of classic analytical approaches to the discovery of causative disease alleles in complex systems. Despite this complexity, new insights have been obtained through the analysis of animal models and focused studies on disease progression in human patient populations. Furthermore, recent advances in our understanding of the human and mouse genomes are providing tools that will significantly enhance future genetic analyses of SLE susceptibility. Here, we will overview our current understanding of the immunological pathogenesis and the genetic basis for susceptibility to SLE of both human and murine lupus.

1.1 Clinical Presentation


A typical patient with SLE is a young woman in her childbearing years who presents with intermittent fatigue, joint pain and swelling, skin rashes, low white blood cell count, and chest pains due to pleuritis. Approximately one‐half of lupus patients will manifest the more severe complications of the disease, which can include nephritis, central nervous system vasculitis, pulmonary hypertension, interstitial lung disease, and stroke. The most characteristic clinical feature of SLE is the production of high‐titered anti‐nuclear autoantibodies (ANAs). Although a variety of organ systems can be targeted in human SLE, targeting of the kidneys is the most severe clinical pathology. Kidney pathology is initiated predominantly through the deposition of ANA‐containing ICs, which initiates a robust inflammatory response, leading to destruction of the glomeruli and subsequent nephritis and proteinuria. Many of the clinical manifestations correlating with morbidity and death are associated with renal failure (Balow, 2005).

The disease course of SLE is quite variable, with pathogenesis commonly following a relapsing and remitting course, with slow progression to more severe clinical disease. This variability is typified by the diagnosis criteria set by the American Rheumatism Association (ARA), which are presented in Table 1. The presence of any 4 disease features from a list of 11 qualifies a diagnosis of “definitive” SLE (Table 1; Tan et al., 1982). These features are diverse and include molar rash, discoid rash, photosensitivity, oral ulcers, arthritis, serositis (pleuritis or pericarditis), renal disorder (persistent proteinuria or cellular casts), neurological disorder (seizures or psychosis), hematological disorder (hemolytic anemia with reticulocytosis, leukopenia, lymphopenia, or thrombocytopenia), immunological disorder (anti‐DNA, anti‐SM, anti‐phospholipid antibodies), and anti‐nuclear antibody (ANA; Hochberg, 1997; Tan et al., 1982).

Table 1

The ARA Criteria for Lupus with Incidence in Patients from 1980

Criteria Specific symptoms Prevalence in patients
1. Malar rash “Butterfly rash” across the nose and cheeks 27–63%
2. Discoid rash Scarring rashes with scaling and plugging of hair follicles 21%
3. Photosensitivity Abnormal light sensitivity 38–60%
4. Oral ulcers Small sores in the mucosal lining of the mouth 16%
5. Arthritis Nondeforming and nonerosive joint inflammation 42–95%
6. Serositis Inflammation in the linings of the heart, lung, or abdominal cavity; usually manifested as pain 25–45%
7. Anti‐nuclear antibody (ANA blood test) Positive test 99%
8. Renal disorder Excessive protein in the urine or the presence of red cells, white cells or casts in the urine 22–50%
9. Neurologic disorder Seizures or psychosis 2–25%
10. Hematologic alterations Hemolytic anemia, leukopenia, thrombocytopenia 81%
11. Immunological alterations LE cell tests, anti‐DNA, anti‐phospholipid or anti‐Sm antibodies 27–56%

References (Hochberg, 1997; Hopkinson et al., 1994; Houman et al., 2004; Jacobsen et al., 1998; Tan et al., 1982; Uramoto et al., 1999).

For a complete description of the changes made to the 1982 criteria see the following link: http://www.rheumatology.org/publications/classification/SLE/1982SLEupdate.asp?aud=mem

The heterogeneity in pathogenesis is also demonstrated by the diverse array of methods proposed for the measurement of disease...

Erscheint lt. Verlag 17.11.2006
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Medizin / Pharmazie Allgemeines / Lexika
Medizin / Pharmazie Medizinische Fachgebiete
Studium Querschnittsbereiche Infektiologie / Immunologie
Naturwissenschaften Biologie
ISBN-10 0-08-046915-9 / 0080469159
ISBN-13 978-0-08-046915-7 / 9780080469157
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 4,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 6,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Antibiotika, Virostatika, Antimykotika, Antiparasitäre Wirkstoffe

von Hans-Reinhard Brodt; Achim Hörauf; Michael Kresken …

eBook Download (2023)
Thieme (Verlag)
164,99
Mit den neuen Preisen vom 1.10.2023

von Peter M. Hermanns; Enrico Schwartz; Katharina von Pannwitz

eBook Download (2023)
Springer Berlin Heidelberg (Verlag)
59,99