Geochemistry of Earth Surface Systems -

Geochemistry of Earth Surface Systems (eBook)

A derivative of the Treatise on Geochemistry
eBook Download: PDF | EPUB
2010 | 1. Auflage
688 Seiten
Elsevier Science (Verlag)
978-0-08-096707-3 (ISBN)
Systemvoraussetzungen
Systemvoraussetzungen
80,95 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Geochemistry of Earth Surface Systems ,offers an interdisciplinary reference for scientists, researchers and upper undergraduate and graduate level ,geochemistry students a sampling of articles on earth surface processes from The Treatise on Geochemistry that is ,more affordable than the full Treatise. For professionals, this volume will provide an ,overview of the field as a whole. For students, it will provide more ,in-depth introductory content than ,is found in ,broad-based geochemistry textbooks. Articles ,were selected from chapters across all volumes of the full Treatise, and include: Volcanic Degassing, Hydrothermal Processes, ,The Contemporary Carbon Cycle, ,Global Occurrence of Major Elements in Rivers, Organic Matter in the Contemporary Ocean, The Biological Pump, and Evolution of Sedimentary Rocks.




  • Comprehensive, interdisciplinary and authoritative content selected by leading subject experts

  • Robust illustrations, figures and tables

  • Affordably priced sampling of ,content from the full Treatise on Geochemistry

Geochemistry of Earth Surface Systems offers an interdisciplinary reference for scientists, researchers and upper undergraduate and graduate level geochemistry students a sampling of articles on earth surface processes from The Treatise on Geochemistry that is more affordable than the full Treatise. For professionals, this volume will provide an overview of the field as a whole. For students, it will provide more in-depth introductory content than is found in broad-based geochemistry textbooks. Articles were selected from chapters across all volumes of the full Treatise, and include: Volcanic Degassing, Hydrothermal Processes, The Contemporary Carbon Cycle, Global Occurrence of Major Elements in Rivers, Organic Matter in the Contemporary Ocean, The Biological Pump, and Evolution of Sedimentary Rocks. Comprehensive, interdisciplinary and authoritative content selected by leading subject experts Robust illustrations, figures and tables Affordably priced sampling of content from the full Treatise on Geochemistry

Cover Page 1
Geochemistry of Earth Surface Systems 2
Copyright Page 3
Contents 4
Introduction 6
References 7
Contributors 8
Chapter 1: Volcanic Degassing 10
Nomenclature 11
1.1. Introduction 11
1.1.1. Earth Outgassing, Atmospheric Evolution and Global Climate 11
1.1.2. Magma Evolution and Dynamics, and Volcanic Eruptions 13
1.1.3. Volcanic Hazards and Volcano Monitoring 13
1.2. Origin, Speciation, and Abundance of Volatiles 15
1.2.1. Sources and Abundances of Volatiles In Magmas 15
1.2.2. Solubility and Speciation of Volatiles 17
1.3. Degassing 18
1.3.1. Saturation 18
1.3.2. Supersaturation and Nucleation 19
1.3.3. Bubble Growth and Magma Ascent 19
1.3.4. Bubble Coalescence 19
1.3.5. Gas Separation 20
1.3.6. Fragmentation 21
1.3.7. Excess Degassing 21
1.4. Emissions 22
1.4.1. Styles of Surface Emissions 22
1.4.1.1. Noneruptive Emissions 23
1.4.1.2. Eruptive Emissions 25
1.4.2. Chemical Composition of Volcanic Gases 25
1.4.3. Measurement of Volatiles 25
1.4.3.1. In Situ Sampling and Analysis 26
1.4.3.2. Portable Remote Sensing Systems 27
1.4.3.3. Satellite Remote Sensing 28
1.4.3.4. Petrological Methods 28
1.4.3.5. Ice Cores 29
1.4.3.6. Application of Geochemical Surveillance to Volcano Monitoring 30
1.5. Fluxes of Volcanic Volatiles to the Atmosphere 32
1.5.1. Sulfur 33
1.5.2. Carbon and Water 35
1.5.3. Halogens 35
1.5.4. Trace Metals 36
1.6. Impacts 36
1.6.1. Stratospheric Chemistry and Radiative Impacts of Volcanic Plumes 37
1.6.1.1. Formation of Stratospheric Sulfate Aerosol Veil 37
1.6.1.2. Impacts on Ozone Chemistry 37
1.6.1.3. Optical and Radiative Effects 39
1.6.2. Climatic Impacts of Major Volcanic Eruptions 40
1.6.2.1. Intermediate to Silicic Eruptions 40
1.6.2.2. Mafic Eruptions 42
1.6.3. Tropospheric Chemistry of Volcanic Plumes 42
1.6.4. Impacts of Volcanic Volatiles on Vegetation and Soils 43
1.6.5. Impacts of Volcanic Pollution on Animal and Human Health 44
1.6.5.1. Gaseous and Particulate Sulfur and Air Quality 44
1.6.5.2. Fluorine 44
1.6.5.3. Carbon Dioxide 44
1.7. Conclusions and Future Directions 45
Acknowledgment 45
References 46
Chapter 2: Hydrothermal Processes 54
2.1. Introduction 55
2.1.1. What is Hydrothermal Circulation? 55
2.1.2. Where Does Hydrothermal Circulation Occur? 57
2.1.3. Why Should Hydrothermal Fluxes Be Considered Important? 59
2.2. Vent-fluid Geochemistry 60
2.2.1. Why are Vent-fluid Compositions of Interest? 60
2.2.2. Processes Affecting Vent-fluid Compositions 61
2.2.3. Compositions of Hydrothermal Vent Fluids 65
2.2.3.1. Major-element Chemistry 65
2.2.3.2. Trace-metal Chemistry 68
2.2.3.3. Gas Chemistry of Hydrothermal Fluids 70
2.2.3.4. Nutrient Chemistry 70
2.2.3.5. Organic Geochemistry of Hydrothermal Vent Fluids 71
2.2.4. Geographic Variations in Vent-fluid Compositions 71
2.2.4.1. The Role of the Substrate 71
2.2.4.2. The Role of Temperature and Pressure 71
2.2.4.3. The Role of Spreading Rate 72
2.2.4.4. The Role of the Plumbing System 73
2.2.5. Temporal Variability in Vent-fluid Compositions 73
2.3. The Net Impact of Hydrothermal Activity 75
2.4. Near-vent Deposits 76
2.4.1. Alteration and Mineralization of the Upper Ocean Crust 76
2.4.2. Near-vent Hydrothermal Deposits 77
2.5. Hydrothermal Plume Processes 78
2.5.1. Dynamics of Hydrothermal Plumes 78
2.5.2. Modification of Gross Geochemical Fluxes 79
2.5.2.1. Dissolved Noble Gases 79
2.5.2.2. Dissolved Reduced Gases (H2S, H2, CH4) 80
2.5.2.3. Iron and Manganese Geochemistry in Hydrothermal Plumes 81
2.5.2.4. Co-precipitation and Uptake with Iron in Buoyant and Nonbuoyant Plumes 82
2.5.2.5. Hydrothermal Scavenging by Fe-oxyhydroxides 83
2.5.3. Physical Controls on Dispersing Plumes 84
2.5.4. Biogeochemical Interactions in Dispersing Hydrothermal Plumes 85
2.5.5. Impact of Hydrothermal Plumes Upon Ocean Geochemical Cycles 86
2.6. Hydrothermal Sediments 86
2.6.1. Near-vent Sediments 86
2.6.2. Deposition from Hydrothermal Plumes 87
2.6.3. Hydrothermal Sediments in Paleoceanography 87
2.6.4. Hydrothermal Sediments and Boundary Scavenging 88
2.7. Conclusion 88
References 89
Chapter 3: The Contemporary Carbon Cycle 96
3.1. Introduction 97
3.2. Major Reservoirs and Natural Fluxes of Carbon 97
3.2.1. Reservoirs 97
3.2.1.1. The Atmosphere 98
3.2.1.2. Terrestrial Ecosystems: Vegetation and soils 99
3.2.1.3. The Oceans 99
3.2.1.4. Fossil Fuels 100
3.2.2. The Natural Flows of Carbon 100
3.2.2.1. Between Land and Atmosphere 100
3.2.2.2. Between Oceans and Atmosphere 101
3.2.2.3. Between Land and Oceans 103
3.3. Changes in the Stocks and Fluxes of Carbon as a Result of Human Activities 103
3.3.1. Changes Over the Period 1850-2000 103
3.3.1.1. Emissions of Carbon from Combustion of Fossil Fuels 103
3.3.1.2. The Increase in Atmospheric CO2 104
3.3.1.3. Net Uptake of Carbon by the Oceans 106
3.3.1.4. Land: Net Exchange of Carbon between Terrestrial Ecosystems and the Atmosphere 107
3.3.1.5. Land: Changes in Land Use 108
3.3.1.6. Land: a Residual Flux of Carbon 109
3.3.2. Changes Over the Period 1980-2000 110
3.3.2.1. The Global Carbon Budget 110
3.3.2.2. Regional Distribution of Sources and sinks of Carbon: the Northern Mid-latitudes 115
3.3.2.3. Regional Distribution of Sources and Sinks of Carbon: the Tropics 117
3.3.2.4Summary: Synthesis of the Results of Different Methods 119
3.4. Mechanisms thought to be Responsible for Current Sinks of Carbon 120
3.4.1. Terrestrial Mechanisms 120
3.4.1.1. Physiological or Metabolic Factors that Enhance Rates of Growth and Carbon Accumulation 121
3.4.1.2. Demographic or Disturbance Mechanisms 126
3.4.2. Oceanic Mechanisms 127
3.4.2.1. Physical and Chemical Mechanisms 127
3.4.2.2. Biological Feedback/processes 128
3.5. The Future: Deliberate Sequestering of Carbon (or Reduction of Sources) 129
3.5.1. Terrestrial 129
3.5.2. Oceanic 129
3.5.3. Geologic 130
3.6. Conclusion 130
References 130
Chapter 4: The Global Sulfur Cycle 138
4.1. Elementary Issues 139
4.1.1. History 139
4.1.2. Isotopes 139
4.1.3. Allotropes 140
4.1.4. Vapor Pressure 140
4.1.5. Chemistry 141
4.2. Abundance of Sulfur and Early History 143
4.2.1. Sulfur in the Cosmos 143
4.2.2. Condensation, Accretion, and Evolution 144
4.2.3. Sulfur on the Early Earth 144
4.3. Occurrence of Sulfur 146
4.3.1. Elemental Sulfur 146
4.3.2. Sulfides 146
4.3.3. Evaporites 146
4.3.4. The Geological History of Sulfur 146
4.3.5. Utilization and Extraction of Sulfur Minerals 147
4.4. Chemistry of Volcanogenic Sulfur 148
4.4.1. Deep-sea Vents 148
4.4.2. Aerial Emissions 148
4.4.3. Fumaroles 149
4.4.4. Crater Lakes 149
4.4.5. Impacts of Emissions on Local Environments 150
4.5. Biochemistry of Sulfur 150
4.5.1. Origin of Life 150
4.5.2. Sulfur Biomolecules 150
4.5.3. Uptake of Sulfur 151
4.6. Sulfur in Seawater 152
4.6.1. Sulfate 152
4.6.2. Hydrogen Sulfide 152
4.6.3. Ocs and Carbon Disulfide 153
4.6.4. Organosulfides 153
4.6.5. Coastal Marshes 155
4.7. Surface and Groundwaters 155
4.8. Marine Sediments 156
4.9. Soils and Vegetation 156
4.10. Troposphere 158
4.10.1. Atmospheric Budget of Sulfur Compounds 158
4.10.2. Hydrogen Sulfide 159
4.10.3. Carbonyl Sulfide 159
4.10.4. Carbon Disulfide 159
4.10.5. Dimethyl Sulfide 159
4.10.6. Dimethylsulfoxide and Methanesulfonic Acid 160
4.10.7. Sulfur 161
4.10.8. Sulfur Dioxide 161
4.10.9. Aerosol Sulfates and Climate 163
4.10.10. Deposition 164
4.11. Anthropogenic Impacts on the Sulfur Cycle 164
4.11.1. Combustion Emissions 164
4.11.2. Organosulfur Gases 165
4.11.3. Acid Rain 165
4.11.4. Water and Soil Pollutants 166
4.11.5. Coastal Pollution 167
4.12. Sulfur in Upper Atmospheres 167
4.12.1. Radiation Balance and Sulfate Particles 167
4.12.2. Ozone 168
4.12.3. Aircraft 168
4.13. Planets and Moons 169
4.13.1. Venus 169
4.13.2. Jupiter 169
4.13.3. Io 169
4.13.4. Europa 169
4.14. Conclusions 170
References 171
Chapter 5: The History of Planetary Degassing as Recorded by Noble Gases 176
5.1. Introduction 177
5.2. Present-Earth Noble Gas Characteristics 177
5.2.1. Surface Inventories 178
5.2.2. Helium Isotopes 178
5.2.3. Neon Isotopes 179
5.2.4. Argon Isotopes 180
5.2.5. Xenon Isotopes 182
5.2.6. Noble Gas Abundance Patterns 183
5.2.7. Morb Fluxes and Upper-mantle Concentrations 184
5.2.8. Other Mantle Fluxes 185
5.2.9. Subduction Fluxes 186
5.3. Bulk Degassing of Radiogenic Isotopes 187
5.3.1. The 40K-40Ar Budget 187
5.3.2. The 129I-129Xe and 244Pu-136Xe Budgets 187
5.4. Degassing of the Mantle 188
5.4.1. Early Earth Degassing 189
5.4.2. Degassing from One Mantle Reservoir 189
5.4.3. Multiple Mantle Reservoirs 190
5.4.4. Interacting Reservoirs 192
5.4.5. Open-system Models 194
5.4.6. Boundaries within the Mantle 196
5.4.7Summary 196
5.5. Degassing of the Crust 197
5.5.1. Crustal Potassium and 40Ar Budget 197
5.5.2. Formation Time of the Crust 198
5.5.3. Present Degassing 198
5.6. Major Volatile Cycles 199
5.6.1. Carbon 199
5.6.2. Nitrogen 201
5.6.3. Water 202
5.7. Degassing of Other Terrestrial Planets 203
5.7.1. Mars 203
5.7.2. Venus 205
5.8. Conclusions 205
Acknowledgment 206
References 206
Chapter 6: Natural Weathering Rates of Silicate Minerals 214
Nomenclature 215
6.1. Introduction 215
6.2. Defining Natural Weathering Rates 216
6.3. Mass Changes Related to Chemical Weathering 216
6.3.1. Bulk Compositional Changes in Regoliths 218
6.3.2. Small-scale Changes in Mineral and Rock Compositions 219
6.3.3. Changes Based on Solute Compositions 220
6.3.3.1. Characterization of Fluid Transport 223
6.3.3.2. Weathering Based on Solutes in Soils 224
6.3.3.3. Weathering Based on Solutes in Groundwater 225
6.3.3.4. Weathering Based on Surface-water solutes 227
6.4. Time as a Factor in Natural Weathering 229
6.4.1. Comparison of Contemporary and Geologic Rates 229
6.4.2. Utilization of Soil Chronosequences 229
6.5. Normalization of Weathering to Surface Area 230
6.5.1. Definitions of Natural Surface Areas 230
6.5.2. Measurements of Specific Surface Areas 230
6.5.3. Surface Roughness 231
6.6. Tabulations of Weathering Rates of Some Common Silicate Minerals 231
6.6.1. Elemental Fluxes 231
6.6.2. Mineral Fluxes 231
6.6.3. Specific Mineral Rates 232
6.6.4. Normalizing Rate Data 232
6.7. Factors Influencing Natural Weathering Rates 233
6.7.1. Mineral Weatherability 233
6.7.2. Solute Chemistry and Saturation States 235
6.7.3. Coupling the Effect of Hydrology and Chemical Weathering 236
6.7.3.1. Initial Stages of Weathering 236
6.7.3.2. Late-stage Weathering 237
6.7.4. Role of Climate on Chemical Weathering 238
6.7.4.1. Temperature 238
6.7.4.2. Precipitation and Recharge 239
6.7.4.3. Coupling Climate Effects 240
6.7.5. Role of Physical Weathering 240
6.7.5.1. Transport Versus Chemical Weathering Regimes 240
6.7.5.2. Physical Development of Regoliths 241
6.8. Weathering Rates in Geochemical Models 242
6.9Summary 243
References 244
Chapter 7: Soil Formation 250
7.1. Introduction 250
7.2. Factors of Soil Formation 251
7.3. Soil Morphology 251
7.4. Mass Balance Models of Soil Formation 252
7.4.1. Mass Balance Evaluation of the Biogeochemistry of Soil Formation 255
7.4.2. Mass Balance of Soil Formation Versus Time 259
7.4.2.1. Temperate Climate 259
7.4.2.2. Cool Tropical Climate 260
7.4.2.3. Role of Atmospheric Inputs on Chemically Depleted Landscapes 262
7.4.3. Mass Balance Evaluation of Soil Formation Versus Climate 262
7.5. Processes of Matter and Energy Transfer in Soils 264
7.5.1. Mechanistic Modeling of the Organic and Inorganic Carbon Cycle in Soils 266
7.5.1.1. Modeling Carbon Movement into Soils 269
7.5.1.2. Modeling Carbon Movement Out of Soils 270
7.5.1.3. Processes and Isotope Composition of Pedogenic Carbonate Formation 271
7.5.2. Lateral Transport of Soil Material by Erosion 276
7.6. Soil Data Compilations 280
7.7. Concluding Comments 280
References 281
Chapter 8: Global Occurrence of Major Elements in Rivers 286
8.1. Introduction 286
8.2. Sources of Data 287
8.3. Global Range of Pristine River Chemistry 287
8.4. Sources, Sinks, and Controls of River-dissolved Material 288
8.4.1. Influence of Lithology on River Chemistry 290
8.4.2. Carbon Species Carried by Rivers 290
8.4.3. Influence of Climate on River Chemistry 292
8.5. Idealized Model of River Chemistry 293
8.6. Distribution of Weathering Intensities at the Global Scale 295
8.7. Global Budget of Riverine Fluxes 296
8.8. Human Alteration of River Chemistry 299
8.9. Conclusions 300
References 300
Chapter 9: Trace Elements in River Waters 302
9.1. Introduction 303
9.2. Natural Abundances of Trace Elements in River Water 304
9.2.1. Range of Concentrations of Trace Elements in River Waters 315
9.2.2. Crustal Concentrations Versus Dissolved Concentrations in Rivers 316
9.2.3. Correlations Between Elements 317
9.2.4. Temporal Variability 319
9.2.5. Conservative Behavior of Trace Elements in River Systems 320
9.2.6. Transport of Elements 320
9.3. Sources of Trace Elements in Aquatic Systems 321
9.3.1. Rock Weathering 321
9.3.2. Atmosphere 323
9.3.3. Other Anthropogenic Contributions 323
9.4. Aqueous Speciation 324
9.5. The "Colloidal World" 327
9.5.1. Nature of the Colloids 327
9.5.2. Ultrafiltration of Colloids and Speciation of Trace Elements in Organic-rich Rivers 328
9.5.3. The Nonorganic Colloidal Pool 330
9.5.4. Fractionation of Rees in Rivers 331
9.5.5. Colloid Dynamics 333
9.6. Interaction of Trace Elements with Solid Phases 334
9.6.1. Equilibrium Solubility of Trace Elements 334
9.6.2. Reactions on Surfaces 336
9.6.3. Experimental Adsorption Studies 336
9.6.4. Adsorption on Hydrous Oxides in River Systems 337
9.6.5. The Sorption of REEs: Competition between Aqueous and Surface Complexation 339
9.6.6. Importance of Adsorption Processes in Large River Systems 339
9.6.7. Anion Adsorption in Aquatic Systems 340
9.6.8. Adsorption and Organic Matter 341
9.6.9. Particle Dynamics 342
9.7. Conclusion 342
Acknowledgment 344
References 344
Chapter 10: The Geologic History ofthe Carbon Cycle 350
10.1. Introduction 350
10.2. Models of Carbon-cycle Change 351
10.2.1. The Carbon Cycle over Geologic Timescales 351
10.2.1.1. The "carbon Dioxide" carbon cycle 351
10.2.1.2. The "methane" Carbon Subcycle 357
10.2.2. Timescales of Carbon-cycle Change 359
10.3. The Quaternary Record of Carbon-Cycle Change 360
10.3.1. Analysis of CO2 and CH4 in Ice Cores 361
10.3.2. Holocene Carbon-cycle Variations 364
10.3.3. Glacial/interglacial Carbon-cycle Variations 368
10.3.3.1. Carbon-cycle Influences on Glacial/interglacial Climate 370
10.3.3.2. Climate Influences on Glacial/interglacial Carbon Cycling 371
10.3.3.3. Carbon/climate Interactions at Glacial terminations 374
10.4. The Phanerozoic Record of Carbon-Cycle Change 376
10.4.1. Mechanisms of Gradual Geologic Carbon-cycle Change 376
10.4.1.1. The Carbonate Weathering-sedimentation Cycle 376
10.4.1.2. The Silicate-carbonate Weathering-decarbonation Cycle 377
10.4.1.3. The Organic Carbon Production-consumption-oxidation Cycle 378
10.4.2. Model Simulations of Gradual Geologic Carbon-cycle Change 380
10.4.3. Geologic Evidence for Phanerozoic Atmospheric CO2 Concentrations 382
10.4.4. Abrupt Carbon-cycle Change 383
10.5. The Precambrian Record of carbon-Cycle Change 384
10.6. Conclusions 385
Acknowledgments 385
References 385
Chapter 11: Organic Matter in the Contemporary Ocean 398
11.1. Introduction 398
11.2. Reservoirs and Fluxes 399
11.2.1. Reservoirs 399
11.2.2. Fluxes 401
11.2.2.1. Terrigenous Organic Matter Fluxes to the Oceans 401
11.2.2.2. Water Column Fluxes and the Burial of organic Carbon in Sediments 401
11.3. The Nature and Fate of Terrigenous Organic Carbon Delivered to the Oceans 402
11.3.1. Background 402
11.3.2. Terrestrial Organic Matter in River Systems 403
11.3.3. Quantitative Importance of Terrigenous Organic Carbon in Marine Sediments 405
11.3.3.1. Black Carbon 406
11.4. A Biopolymeric Origin for Oceanic Dissolved Organic Matter 407
11.4.1. Background 407
11.4.2. High Molecular Weight Dissolved Organic Matter: Biopolymers or Geopolymers? 408
11.4.2.1. Acylpolysaccharides in High Molecular Weight Dissolved Organic Matter 409
11.4.2.2. Proteins in High Molecular Weight Dissolved Organic Matter 411
11.4.3. Gel Polymers and the Cycling of High Molecular Weight Dissolved Organic Matter 413
11.5. Emerging Perspectives on Organic Matter Preservation 415
11.5.1. Background 415
11.5.2. Compositional Transformations Associated with Sedimentation and Burial of Organic Matter 415
11.5.3. Controls on Organic Matter Preservation 418
11.5.3.1. Physical Protection 419
11.5.3.2. Role of Anoxia 420
11.5.3.3. Chemical Protection 421
11.6. Microbial Organic Matter Production and Processing: New Insights 423
11.6.1. Background 423
11.6.2. Planktonic Archea 424
11.6.3. Anaerobic Methane Oxidation 424
11.7Summary and Future Research Directions 426
Acknowledgment 427
References 427
Chapter 12: The Biological Pump 434
Nomenclature 435
12.1. Introduction 435
12.2. Description of the Biological Pump 436
12.2.1. Photosynthesis and Nutrient Uptake 437
12.2.1.1. Levels of Primary Production 438
12.2.1.2. Patterns in Time and Space 438
12.2.1.3. Nutrient Limitation 439
12.2.2. Flocculation and Sinking 439
12.2.2.1. Marine Snow 439
12.2.2.2. Aggregation and Exopolymers 439
12.2.2.3. Sinking and Transport of Pom to Depth 440
12.2.3. Particle Decomposition and Repackaging 440
12.2.3.1. Zooplankton Grazing 441
12.2.3.2. Bacterial Hydrolysis 441
12.2.3.3. Geochemistry of Decomposition 442
12.2.4. Sedimentation and Burial 442
12.2.5. Dissolved Organic Matter 442
12.2.6. New, Export, and Regenerated Production 443
12.3. Impact of the Biological Pump on Geochemical Cycling 443
12.3.1. Macronutrients 443
12.3.1.1. Carbon 443
12.3.1.2. Nitrogen 444
12.3.1.2.1. Nitrogen Fixation 444
12.3.1.3. Phosphorus 445
12.3.1.4. Silicon 445
12.3.1.4.1. The Impact of the Appearance of the Diatoms on the Marine Silica Cycle 445
12.3.1.4.2. Excessive Pumping of Silicon 446
12.3.2. Trace Elements 446
12.3.2.1. Barium 446
12.3.2.2. Zinc 447
12.3.2.3. Cadmium 448
12.3.2.4. Iron 449
12.4. Quantifying the Biological Pump 449
12.4.1. Measurement of New Production 449
12.4.2. Measurement of Particle Flux 450
12.4.2.1. Sediment Traps 450
12.4.2.2. Particle-reactive Nuclides 451
12.4.2.3. Oxygen Utilization Rates 451
12.5. The Efficiency of the Biological Pump 452
12.5.1. Altering the Efficiency of the Biological Pump 452
12.5.1.1. In Hnlc Areas 452
12.5.1.2. Through Changes in Community Composition 453
12.5.1.3. By Varying the C:N:P Ratios of Sinking Material 453
12.5.1.4. By Enhancing Particle Transport 454
12.6. The Biological Pump in the Immediate Future 454
12.6.1. Response to Increased CO2 454
12.6.2. Response to Agricultural Runoff 455
12.6.2.1. Shift Toward Si Limitation 455
12.6.2.2. Shifts in Export Production and Deep Ocean C:N:P 455
12.6.3. Carbon Sequestration via Ocean Fertilization and the Biological Pump 455
References 456
Chapter 13: The Biological Pump in the Past 462
13.1. Introduction 462
13.2. Concepts 467
13.2.1. Low- and Mid-latitude Ocean 469
13.2.2. High-latitude Ocean 474
13.3. Tools 478
13.3.1. Export Production 480
13.3.2. Nutrient Status 481
13.3.3. Integrative Constraints on the Biological Pump 483
13.3.3.1. Carbon Isotope Distribution of the Ocean and Atmosphere 483
13.3.3.2. Deep-ocean Oxygen Content 483
13.3.3.3. Phasing 484
13.4. Observations 484
13.4.1. Low- and Mid-latitude Ocean 484
13.4.2. High-latitude Ocean 487
13.5Summary and Current Opinion 491
Acknowledgment 492
References 492
Chapter 14: The Oceanic CaCO3 Cycle 500
14.1. Introduction 500
14.2.Depth of Transition Zone 501
14.3.Distribution of Co32- Ion in Today's Deep Ocean 502
14.4.Depth of Saturation Horizon 504
14.5.Dissolution Mechanisms 505
14.6.Dissolution in the Past 507
14.7.Sediment-Based Proxies 508
14.8.Shell Weights 510
14.9.The Boron Isotope Paleo PH Method 511
14.10.Zn/Cd Ratios 512
14.11.Dissolution and Preservation Events 513
14.12.Glacial to Interglacial Carbonate Ion Change 517
14.13.Neutralization of Fossil Fuel Co2 518
References 518
Chapter 15: The Global Oxygen Cycle 520
15.1. Introduction 521
15.2. Distribution of O2 Among Earth Surface Reservoirs 521
15.2.1. The Atmosphere 521
15.2.2. The Oceans 521
15.2.3. Freshwater Environments 524
15.2.4. Soils and Groundwaters 525
15.3. Mechanisms of O2 Production 525
15.3.1. Photosynthesis 525
15.3.2. Photolysis of Water 526
15.4. Mechanisms of O2 Consumption 527
15.4.1. Aerobic Cellular Respiration 527
15.4.2. Photorespiration 527
15.4.3. C1 Metabolism 528
15.4.4. Inorganic Metabolism 528
15.4.5. Macroscale Patterns of Aerobic Respiration 528
15.4.6. Volcanic Gases 529
15.4.7. Mineral Oxidation 529
15.4.8. Hydrothermal Vents 530
15.4.9. Iron and Sulfur Oxidation atthe Oxic-Anoxic Transition 530
15.4.10. Abiotic Organic Matter Oxidation 530
15.5. Global Oxygen Budgets and the Global Oxygen Cycle 531
15.6. Atmospheric O2 Throughout Earth's History 531
15.6.1. Early Models 531
15.6.2. The Archean 533
15.6.2.1. Constraints on the O2 Content of the Archean Atmosphere 533
15.6.2.2. The Evolution of Oxygenic Photosynthesis 535
15.6.2.3. Carbon Isotope Effects Associated with Photosynthesis 536
15.6.2.4. Evidence for Oxygenic Photosynthesis in the Archean 537
15.6.3. The Proterozoic Atmosphere 537
15.6.3.1. Oxygenation of the Proterozoic Atmosphere 537
15.6.3.2. Atmospheric O2 During the Mesoproterozoic 540
15.6.3.3. Neoproterozoic Atmospheric O2 541
15.6.4. Phanerozoic Atmospheric O2 543
15.6.4.1. Constraints on Phanerozoic O2 Variation 543
15.6.4.2. Evidence for Variations in Phanerozoic O2 543
15.6.4.3. Numerical Models of Phanerozoic Oxygen Concentration 546
15.7. Conclusions 554
References 556
Chapter16: The Global Nitrogen Cycle 560
16.1. Introduction 561
16.2. Biogeochemical Reactions 562
16.2.1. The Initial Reaction: Nr Creation 562
16.2.2. Atmosphere 563
16.2.2.1. Inorganic Reduced Nitrogen 564
16.2.2.2. Inorganic Oxidized Nitrogen 564
16.2.2.3. Reduced Organic Nitrogen 564
16.2.2.4. Oxidized Organic Nitrogen 565
16.2.3. Biosphere 565
16.3. Nitrogen Reservoirs and Their Exchanges 565
16.3.1. Land to Atmosphere 565
16.3.2. Ocean to Atmosphere 566
16.3.3. Atmosphere to Surface 566
16.3.4. Land to Ocean 566
16.4. Nr Creation 566
16.4.1. Introduction 566
16.4.2. Lightning-Natural 566
16.4.3. Terrestrial Bnf-Natural 566
16.4.4. Anthropogenic 567
16.4.4.1. Introduction 567
16.4.4.2. Food Production 567
16.4.4.3. Energy Production 569
16.4.5. Nr Creation Rates From 1860 to 2000 569
16.5. Global Terrestrial Nitrogen Budgets 570
16.5.1. Introduction 570
16.5.2. Nr Creation 571
16.5.3. Nr Distribution 572
16.5.4. Nr Conversion to N2 573
16.6. Global Marine Nitrogen Budget 574
16.7. Regional Nitrogen Budgets 575
16.8. Consequences 577
16.8.1. Introduction 577
16.8.2. Atmosphere 578
16.8.3. Terrestrial Ecosystems 579
16.8.4. Aquatic Ecosystems 580
16.9. Future 581
16.10Summary 582
Acknowledgment 583
References 583
Chapter17: Evolution of Sedimentary Rocks 588
17.1. Introduction 589
17.2. The Earth System 589
17.2.1. Population Dynamics 589
17.3. Generation and Recyclingof the Oceanic and Continental Crust 591
17.4. Global Tectonic Realms and Their Recycling Rates 592
17.5. Present-day Sedimentary Shell 593
17.6. Tectonic Settings and Their Sedimentary Packages 594
17.7. Petrology, Mineralogy, and Major Element Composition of Clastic Sediments 595
17.7.1. Provenance 595
17.7.2. Transport Sorting 597
17.7.3. Sedimentary Recycling 597
17.8. Trace Element and Isotopic Composition of Clastic Sediments 597
17.9. Secular Evolution of Clastic Sediments 598
17.9.1. Tectonic Settings and Lithology 598
17.9.2. Chemistry 599
17.9.3. Isotopes 600
17.10. Sedimentary Recycling 601
17.11. Ocean/Atmosphere System 602
17.11.1. The Chemical Composition of Ancient Ocean 603
17.11.2. Isotopic Evolution of Ancient Oceans 604
17.11.2.1. Strontium Isotopes 604
17.11.2.2. Osmium Isotopes 607
17.11.2.3. Sulfur Isotopes 607
17.11.2.4. Carbon Isotopes 609
17.11.2.5. Oxygen Isotopes 611
17.11.2.6. Isotope Tracers in Developmental Stages 612
17.12. Major Trends in the Evolution of Sediments During Geologic History 614
17.12.1. Overall Pattern of Lithologic Types 614
17.12.2. Phanerozoic Carbonate Rocks 615
17.12.2.1. Mass-age Distribution and Recycling rates 615
17.12.2.2. Dolomite/calcite Ratios 616
17.12.2.3. Ooids and Ironstones 617
17.12.2.4. Calcareous Shelly Fossils 618
17.12.2.5. The Carbonate Cycle in the Ocean 619
17.12.3. Geochemical Implications of the Phanerozoic Carbonate Record 619
Acknowledgments 620
References 620
Chapter18: Generation of Mobile Components During Subduction of Oceanic Crust 626
18.1. Introduction 626
18.2. Setting the Scene 628
18.2.1. The Oceanic Lithosphere Before Subduction 628
18.2.2. Continuous Versus Discontinuous Reactions 630
18.2.3. Fluid Production 631
18.2.4. Fluid Availability Versus Multicomponent Fluids 632
18.2.5. Real World Effects 632
18.3. Devolatilization Regimes In Morb 632
18.3.1. High Dehydration Rates and Fluid Production (Typically Up to 600 °C And 2.4 Gpa) 632
18.3.2. Low Dehydration Rates and Little Fluid Production (2.4-10 Gpa and 500-800 °C) 634
18.3.3. Melting Regimes (650-950 °C to 5-6 Gpa)
18.3.3.1. Fluid-saturated (flush) Melting 635
18.3.3.2. Fluid-absent Melting 635
18.3.4. Dissolution Regime (> 5-6 Gpa)
18.4. How Much H2O Subducts into the Transition Zone? 637
18.5. Devolatilization in Sediments 638
18.5.1. Pelites 638
18.5.2. Carbonates 639
18.5.3. Graywackes and Volcaniclastics 640
18.5.4. Melting of Sediments Compared to Melting of Morb 640
18.6. Serpentinized Peridotite 641
18.7. Implications for Trace Elements and an Integrated View of the Oceanic Lithosphere 643
18.7.1. Mobile Phase Production and Trace-element Transfer 643
18.7.2. Integrating Fluid Flux Over the Entire Subducted Oceanic Crust: an Example 644
18.8. Conclusions and Outlook 645
References 647
Appendix 1 652
Appendix 2 653
Appendix 3 657
Appendix 4 658
Index 660

REFERENCES


Abdalati W, Steffen K. The apparent effects of the Pinatubo eruption on the Greenland ice sheet melt extent. Geophys. Res. Lett. 1997;24:1795–1797.

Adams NK, de Silva SL, Self S, Salas G, Schubring S, Permenter JL, Arbesman K. The physical volcanology of the 1600 eruption of Huaynaputina, southern Peru. Bull. Volcanol. 2001;62:493–518.

Aiuppa A, Federico C, Paonita A, Pecoraino G, Valenza M. S, Cl, and F degassing as an indicator of volcanic dynamics: the 2001 eruption of Mount Etna. Geophys. Res. Lett. 2002;29:doi:10.1029/2002GL015032.

Allard P. Endogenous magma degassing and storage at Mount Etna. Geophys. Res. Lett. 1997;24:2219–2222.

Allard P, Carbonelle J, Metrich N, Zettwoog P. Eruptive and diffuse emissions of carbon dioxide from Etna volcano. Nature. 1991;351:38–391.

Allard P, Carbonnelle J, Métrich N, Loyer H, Zettwoog P. Sulphur output and magma degassing budget of Stromboli volcano. Nature. 1994;368:326–330.

Allard P, Aiuppa A, Loyer H, Carrot F, Gaudry A, Pinte G, Michel A, Dongarrà G. Acid gas and metal emission rates during long-lived basalt degassing at Stromboli volcano. Geophys. Res. Lett. 2000;27:1207–1210.

Allen AG, Baxter PJ, Ottley CJ. Gas and particle emissions from Soufrière Hills volcano, Montserrat WI: characterization and health hazard assessment. Bull. Volcanol. 2000;62(1):6–17.

Allen AG, Oppenheimer C, Ferm M, Baxter PJ, Horrocks L, Galle B, McGonigle AJS, Duffell HJ. Primary sulphate aerosol and associated emissions from Masaya volcano, Nicaragua. J. Geophys. Res. 2002;4:doi:10.1029/2002JD0 (4 December 2002).

Anderson AT. Some basaltic and andesitic gases. Rev. Geophys. Space Phys. 1975;13:37–55.

Andres RJ, Kasgnoc AD. A time-averaged inventory of subaerial volcanic sulfur emissions. J. Geophys. Res. 1998;103:25251–25261.

Andres RJ, Rose WI. Remote sensing spectroscopy of volcanic plumes and clouds. In: McGuire B, Kilburn C, Murray J, eds. Monitoring Active Volcanoes: Strategies, Procedures and Techniques. London: UCL Press; 1995:301–314.

Araya O, Wittwer F, Villa A, Ducom C. Bovine fluorosis following volcanic activity in the southern Andes. Vet. Rec. 1990;126:641–642.

Araya O, Wittwer F, Villa A. Evolution of fluoride concentrations in cattle and grass following a volcanic eruption. Vet. Hum. Toxicol. 1993;35:437–440.

Arthur MA. Volcanic contributions to the carbon and sulfur geochemical cycles and global change. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, eds. Encyclopedia of Volcanoes. San Diego: Academic Press; 2000:1046–1056.

Baran A, Foot JS. New application of the operational sound HIRS in determining a climatology of acid aerosol from the Pinatubo eruption. J. Geophys. Res. 1994;99:25673–25679.

Baran AJ, Foot JS, Dibben PC. Satellite detection of volcanic sulfuric acid aerosol. Geophys. Res. Lett. 1993;20:1799–1801.

Barmin A, Melnik O, Sparks RSJ. Periodic behaviour in lava dome eruptions. Earth Planet. Sci. Lett. 2002;199:173–184.

Baxter PJ. Impacts of eruptions on human health. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, eds. Encyclopedia of Volcanoes. San Diego: Academic Press; 2000:1035–1043.

Baxter PJ, Stoiber RE, Williams SN. Volcanic gases and health: Masaya volcano, Nicaragua. Lancet. 1982;2:150–151.

Blank JG, Brooker RA. Experimental studies of carbon dioxide in silicate melts: solubility, speciation, and stable carbon isotope behavior. Rev. Mineral. 1994;30:157–186.

Blower JD, Mader HM, Wilson SDR. Coupling of viscous and diffusive controls on bubble growth during explosive volcanic eruptions. Earth Planet. Sci. Lett. 2001;193:47–56.

Blundy J, Cashman KV. Ascent-driven crystallization of dacite magmas of Mount St Helens, 1980–1986. Contrib. Mineral. Petrol. 2001;140:631–650.

Bluth GJS, Doiron SD, Schnetzler CC, Krueger AJ, Walter LS. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys. Res. Lett. 1992;19:151–154.

Bluth GJS, Schnetzler CC, Krueger AJ, Walter LS. The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations. Nature. 1993;366:327–329.

Bluth GJS, Rose WI, Sprod IE, Krueger AJ. Stratospheric loading of sulfur from explosive volcanic eruptions. J. Geol. 1997;105:671–684.

Briffa KR, Jones PD. The climate of Europe during the 1810s with special reference to 1816. In: Harington CR, ed. The Year without a Summer? World Climate in 1816. Ottawa: Canadian Museum of Nature; 1992:372–391.

Briffa KR, Jones PD, Schweingruber FH, Osborn TJ. Influence of volcanic eruptions on northern hemisphere summer temperature over the past 600 years. Nature. 1998;393:450–455.

Bureau H, Keppler H, Métrich N. Volcanic degassing of bromine and iodine: experimental fluid/melt partitioning data and applications to stratospheric chemisty. Earth Planet. Sci. Lett. 2000;183:51–60.

Burnham CW. The importance of volatile constituents. In: HSYoder Jr., eds. The Evolution of Igneous Rocks: Fiftieth Anniversary Perspectives. Princeton, NJ: Princeton University Press; 1979.

Burton M, Allard P, Murè F, Oppenheimer C. FTIR remote sensing of fractional magma degassing at Mt. Etna, Sicily. In: Oppenheimer C, Pyle DM, Barclay J, eds. Volcanic Degassing. Geological Society of London; 281–293. Geological Society of London Special Publication. 2003;213.

Burton MR, Oppenheimer C, Horrocks LA, Francis PW. Remote sensing of CO2 and H2O emission rates from Masaya volcano, Nicaragua. Geology. 2000;28:915–918.

Cadle RD. Volcanic emissions of halides and sulfur compounds to the troposphere and stratosphere. J. Geophys. Res. 1975;80:1650–1652.

Cadle RD. A comparison of volcanic with other fluxes of atmospheric trace gas constituents. Rev. Geophys. Space Phys. 1980;18:746–752.

Camuffo D, Enzi S. Impact of clouds of volcanic aerosols in Italy during the last seven centuries. Nat. Hazards. 1995;11(2):135–161.

Canil D. Vanadium in peridotites, mantle redox and tectonic environments: Archean to present. Earth Planet. Sci. Lett. 2002;195:75–90.

Carey S, Sigurdsson H. The intensity of plinian eruptions. Bull. Volcanol. 1989;51:28–40.

Carn SA, Krueger AJ, Bluth GJS, Schaefer SJ, Krotkov NA, Watson IM, Datta S. Volcanic eruption detection by the Total Ozone Mapping Spectrometer (TOMS) instruments: a 22-year record of sulfur dioxide and ash emissions. In: Oppenheimer C, Pyle DM, Barclay J, eds. Volcanic Degassing. Geological Society of London; 177–202. Geological Society of London Special Publication. 2003;213.

Carroll MR, Holloway JR, eds. Volatiles in Magmas. Washington, DC: Mineralogical Society of America; 517. Reviews in Mineralogy. 1994;30.

Carroll MR, Webster JD. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas. Rev. Mineral. 1994;30:187–230.

Cashman KV. Groundmass crystallization of Mount St. Helens dacite, 1980–1986—a tool for interpreting shallow magmatic processes. Contrib. Mineral. Petrol. 1992;109:431–449.

Cashman KV, Sturtevant B, Papale P, Navon O. Magmatic fragmentation. In: Sigurdsson H, Houghton BF, McNutt SR, Rymer H, Stix J, eds. Encyclopedia of Volcanoes. San Diego, CA: Academic Press; 2000:421–430.

Catling D, Kasting JF. Planetary atmospheres and life. In: Baross J, Sullivan W, eds. The Emerging Science of Astrobiology. Cambridge University Press; 2003 (in press).

Catling DC, Zahnle KJ, McKay CP. Biogenic methane, hydrogen escape, and the irreversible oxidation of the early earth. Science. 2001;393:839–843.

Chesner CA, Rose WI. Stratigraphy of the Toba tuffs and the evolution of the Toba caldera complex, Sumatra. Indonesia. Bull. Volcanol. 1991;53:343–356.

Cheynet B, Dall’Aglio M, Garavelli A, Grasso MF, Vurro F. Trace elements from fumaroles at Vulcano Island (Italy): rates of transport and a thermochemical model. J. Volcanol. Geotherm. Res. 2000;95:273–283.

Chin M, Jacob DJ. Anthropogenic and natural contributions to tropospheric sulfate: a global model analysis. J. Geophys. Res. 1996;101:18691–18699.

Coffey MT. Observations of the impact of volcanic activity on stratospheric chemistry. J. Geophys. Res. 1996;101:6767–6780.

Coffey MT, Mankin WG. Observations of the loss of stratospheric NO2 following volcanic eruptions. Geophys. Res. Lett. 1993;29:2873–2876.

Coltelli M, Del Carlo P, Vezzoli L. Discovery of a plinian basaltic eruption of...

Erscheint lt. Verlag 27.9.2010
Sprache englisch
Themenwelt Sachbuch/Ratgeber
Naturwissenschaften Chemie
Naturwissenschaften Geowissenschaften Geologie
Naturwissenschaften Geowissenschaften Geophysik
Naturwissenschaften Physik / Astronomie
Technik
ISBN-10 0-08-096707-8 / 0080967078
ISBN-13 978-0-08-096707-3 / 9780080967073
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 47,2 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)
Größe: 24,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich