Machine Learning Approaches in Cyber Security Analytics - Tony Thomas, Athira P. Vijayaraghavan, Sabu Emmanuel

Machine Learning Approaches in Cyber Security Analytics (eBook)

eBook Download: PDF
2019 | 1st ed. 2020
XI, 209 Seiten
Springer Singapore (Verlag)
978-981-15-1706-8 (ISBN)
Systemvoraussetzungen
149,79 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks.



Tony Thomas is an Associate Professor at the Indian Institute of Information Technology and Management, Kerala, India. He received his master's and Ph.D. degrees from IIT Kanpur. After completing his Ph.D., he pursued postdoctoral research at the Korea Advanced Institute of Science and Technology, Daejeon, South Korea. He later worked as a member of research staff at the General Motors Research Lab, Bangalore, India, and the School of Computer Engineering, Nanyang Technological University, Singapore. His current research interests include malware analysis, biometrics, cryptography, machine learning, cyber threat prediction and visualization, digital watermarking, multimedia security and digital forensics.

Athira P. Vijayaraghavan holds an M.Tech. degree in Information Security and Cyber Forensics from SRM Institute of Science and Technology (formerly known as SRM University), Chennai, India, and a B.Tech. degree in Information Technology from Calicut University, Kerala, India. She currently works at Acalvio Technologies, Bengaluru, Karnataka, as a member of technical staff. She worked as a Research Associate at the Indian Institute of Information Technology and Management, Kerala, India, till August 2019. Her current research interests include autonomous deception for malware detection, threat intelligence analysis, malware analysis, memory forensics and cyber threat prediction.

Sabu Emmanuel received his B.E. degree in Electronics and Communication Engineering from the Regional Engineering College, Durgapur (now NIT Durgapur), India, in 1988, his M.E. degree in Electrical Communication Engineering from the Indian Institute of Science, Bangalore, India, in 1998, and his Ph.D. degree in Computer Science from the National University of Singapore, Singapore, in 2002. He was an Assistant Professor at the School of Computer Engineering, Nanyang Technological University, Singapore; an Associate Professor at the Department of Computer Science, Kuwait University; and a Visiting Professor at IIT Palakkad. His current research interests include malware analysis, multimedia and software security and surveillance video processing.

 

                 

 


This book introduces various machine learning methods for cyber security analytics. With an overwhelming amount of data being generated and transferred over various networks, monitoring everything that is exchanged and identifying potential cyber threats and attacks poses a serious challenge for cyber experts. Further, as cyber attacks become more frequent and sophisticated, there is a requirement for machines to predict, detect, and identify them more rapidly. Machine learning offers various tools and techniques to automate and quickly predict, detect, and identify cyber attacks.
Erscheint lt. Verlag 16.12.2019
Zusatzinfo XI, 209 p. 76 illus., 43 illus. in color.
Sprache englisch
Themenwelt Mathematik / Informatik Informatik Datenbanken
Informatik Netzwerke Sicherheit / Firewall
Informatik Theorie / Studium Algorithmen
Informatik Theorie / Studium Kryptologie
Naturwissenschaften
Recht / Steuern Strafrecht Kriminologie
Sozialwissenschaften Politik / Verwaltung
Schlagworte Anomaly Detection • biometrics • cyber security • data structures • machine intelligence • Malware
ISBN-10 981-15-1706-1 / 9811517061
ISBN-13 978-981-15-1706-8 / 9789811517068
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 6,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Umfassendes Sicherheits-, Kontinuitäts- und Risikomanagement mit …

von Klaus-Rainer Müller

eBook Download (2023)
Springer Fachmedien Wiesbaden (Verlag)
79,99
Das Praxishandbuch zu Krisenmanagement und Krisenkommunikation

von Holger Kaschner

eBook Download (2024)
Springer Vieweg (Verlag)
37,99