Social Media Data Mining and Analytics (eBook)

eBook Download: PDF
2018 | 1. Auflage
352 Seiten
John Wiley & Sons (Verlag)
978-1-118-82490-0 (ISBN)

Lese- und Medienproben

Social Media Data Mining and Analytics - Gabor Szabo, Gungor Polatkan, P. Oscar Boykin, Antonios Chalkiopoulos
Systemvoraussetzungen
28,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
Harness the power of social media to predict customer behavior and improve sales

Social media is the biggest source of Big Data. Because of this, 90% of Fortune 500 companies are investing in Big Data initiatives that will help them predict consumer behavior to produce better sales results. Social Media Data Mining and Analytics shows analysts how to use sophisticated techniques to mine social media data, obtaining the information they need to generate amazing results for their businesses.

Social Media Data Mining and Analytics isn't just another book on the business case for social media. Rather, this book provides hands-on examples for applying state-of-the-art tools and technologies to mine social media - examples include Twitter, Wikipedia, Stack Exchange, LiveJournal, movie reviews, and other rich data sources. In it, you will learn:

* The four key characteristics of online services-users, social networks, actions, and content

* The full data discovery lifecycle-data extraction, storage, analysis, and visualization

* How to work with code and extract data to create solutions

* How to use Big Data to make accurate customer predictions

* How to personalize the social media experience using machine learning

Using the techniques the authors detail will provide organizations the competitive advantage they need to harness the rich data available from social media platforms.

GABOR SZABO, PHD, is a Senior Staff Software Engineer at Tesla and a former data scientist at Twitter, where he focused on predicting user behavior and content popularity in crowdsourced online services, and on modeling large-scale content dynamics. He also authored the PyCascading data processing library. GUNGOR POLATKAN, PHD, is a Tech Lead/Engineering Manager designing and implementing end-to-end machine learning and artificial intelligence offline/online pipelines for the LinkedIn Learning relevance backend. He was previously a machine learning scientist at Twitter, where he worked on topics such as ad targeting and user modeling. P. OSCAR BOYKIN, PHD, is a software engineer at Stripe where he works on machine learning infrastructure. He was previously a Senior Staff Engineer at Twitter, where he worked on data infrastructure problems. He is coauthor of the Scala big-data libraries Algebird, Scalding and Summingbird. ANTONIOS CHALKIOPOULOS, MSC, is a Distributed Systems Specialist. A system engineer who has delivered fast/big data projects in media, betting, and finance, he is now leading the effort on the Lenses platform for data streaming as a co-founder and CEO at https://lenses.stream.

Erscheint lt. Verlag 18.9.2018
Sprache englisch
Themenwelt Informatik Datenbanken Data Warehouse / Data Mining
Mathematik / Informatik Informatik Netzwerke
Mathematik / Informatik Informatik Web / Internet
Recht / Steuern Privatrecht / Bürgerliches Recht IT-Recht
Schlagworte Computer Science • Database & Data Warehousing Technologies • Data Mining • Data Mining & Knowledge Discovery • Data Mining u. Knowledge Discovery • Datenbanken u. Data Warehousing • Informatik • Social Media
ISBN-10 1-118-82490-3 / 1118824903
ISBN-13 978-1-118-82490-0 / 9781118824900
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
PDFPDF (Adobe DRM)
Größe: 31,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Datenschutz und Sicherheit in Daten- und KI-Projekten

von Katharine Jarmul

eBook Download (2024)
O'Reilly (Verlag)
49,90