Manufacturing Flexible Packaging -  Thomas Dunn

Manufacturing Flexible Packaging (eBook)

Materials, Machinery, and Techniques

(Autor)

eBook Download: PDF | EPUB
2014 | 1. Auflage
304 Seiten
Elsevier Science (Verlag)
978-0-323-26505-8 (ISBN)
170,00 € inkl. MwSt
Systemvoraussetzungen
169,94 € inkl. MwSt
Systemvoraussetzungen
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Efficiently and profitably delivering quality flexible packaging to the marketplace requires designing and manufacturing products that are both 'fit-to-use' and 'fit-to-make'. The engineering function in a flexible packaging enterprise must attend to these dual design challenges.

Flexible Packaging discusses the basic processes used to manufacture flexible packaging products, including rotogravure printing, flexographic printing, adhesive lamination, extrusion lamination/coating; and finishing/slitting. These processes are then related to the machines used to practice them, emphasising the basics of machines' control systems , and options to minimize wasted time and materials between production jobs.

Raw materials are also considered, including the three basic forms: Rollstock (paper, foil, plastic films); Resin; and Wets (inks, varnishes, primers). Guidance is provided on both material selection, and on adding value through enhancement or modification of the materials' physical features.

A 'measures' section covers both primary material features - such as tensile, elongation, modulus and elastic and plastic regions - and secondary quality characteristics such as seal and bond strengths, coefficient of friction, oxygen barrier and moisture vapour barrier.


  • Helps engineers improve existing raw material selection and manufacturing processes for manufacturing functional flexible packaging materials.
  • Covers all aspects of delivering high value packaging to the customer - from the raw materials, to the methods of processing them, the machines used to do it, and the measures required to gauge the characteristics of the product.
  • Helps engineers to minimize waste and unproductive time in production.

Efficiently and profitably delivering quality flexible packaging to the marketplace requires designing and manufacturing products that are both "e;fit-to-use"e; and "e;fit-to-make"e;. The engineering function in a flexible packaging enterprise must attend to these dual design challenges. Flexible Packaging discusses the basic processes used to manufacture flexible packaging products, including rotogravure printing, flexographic printing, adhesive lamination, extrusion lamination/coating; and finishing/slitting. These processes are then related to the machines used to practice them, emphasising the basics of machines' control systems , and options to minimize wasted time and materials between production jobs. Raw materials are also considered, including the three basic forms: Rollstock (paper, foil, plastic films); Resin; and Wets (inks, varnishes, primers). Guidance is provided on both material selection, and on adding value through enhancement or modification of the materials' physical features. A 'measures' section covers both primary material features - such as tensile, elongation, modulus and elastic and plastic regions - and secondary quality characteristics such as seal and bond strengths, coefficient of friction, oxygen barrier and moisture vapour barrier. Helps engineers improve existing raw material selection and manufacturing processes for manufacturing functional flexible packaging materials. Covers all aspects of delivering high value packaging to the customer - from the raw materials, to the methods of processing them, the machines used to do it, and the measures required to gauge the characteristics of the product. Helps engineers to minimize waste and unproductive time in production.

Front Cover 1
Manufacturing Flexible Packaging 4
Copyright Page 5
Contents 6
Introduction 14
Background 15
Reference 17
1 Basics of Web Processes 18
Web Tension 19
Web Winding 20
Cross-Web Variation 22
Web Dimensional Analysis 26
Industry Units of Measure 26
Web Length Estimation 28
Roll Rewind Designation 29
2 Rotogravure Printing 30
Gravure Process 31
Gravure Cylinders 31
Halftone Image Reproduction 33
Ink Metering 37
Gravure Process Innovation 39
Cylinder Cost and Cycle Time 40
Work Practices 41
Reference 42
3 Flexographic Printing 44
The Flexo Process 45
Numerical Color Space 45
Flexo Ink Metering 49
Flexo Halftone Printing (Process Printing) 50
Flexo Process Innovation 52
Reference 54
4 Adhesive Lamination 56
Adhesive Laminating Process 58
Adhesive Lamination Strength 60
Other Coating Processes 61
Adhesive Laminating Innovation 62
Reference 64
5 Extrusion Lamination and Coating 66
Extrusion Laminating Process 66
Promoting Adhesion: Melt Curtain 69
Promoting Adhesion: Substrate 71
Extrusion Coating Process 72
Extrusion Laminating Innovation 74
References 76
6 Finishing and Slitting 78
Communicating Slit Roll Requirements 78
Slitting Options 82
Rewind Options 82
References 86
7 In-Line Processes 88
Equipment Requirements 88
Operational Considerations 90
Availability 90
Performance 91
Quality 91
Success Criteria 91
8 OEE Effectiveness 94
Overall Equipment Effectiveness 96
Availability 98
Performance 98
Quality 100
OEE Calculation 100
References 102
9 Efficiency and Cost Accounting 104
Efficiency 105
Material Waste 107
Time Waste 109
Cost Accounting 110
Minimum Order Size 115
References 118
10 Basics of Control Systems 120
Distributed Control Systems 120
Data Inputs 122
Process Feedback 123
Open-Loop Control System 123
Closed-Loop Control System 124
PID Controls 125
References 127
11 Rotogravure Presses 128
Press Components 128
Ink Viscosity 130
Electrostatic Assist 131
Image Monitoring 131
12 Flexographic Presses 134
Press Components 134
Plate Cylinder Pressure 135
Plates, Mounting Tape, and Plate Sleeves 137
Drying Technology 138
Reference 139
13 Adhesive Laminators 140
Dry Bond Laminators 140
Solventless Laminators 142
Online Coating Measurement 142
14 Flexible Packaging Extrusion Coating/Laminating Line 144
Line Configuration 146
Gauge Measurement and Control 146
15 Slitters 150
16 Preventative Maintenance versus Available Production Time 154
Availability 154
Preventative Maintenance 155
Calibration 156
Actual Operating Time 157
17 Setup/Cleanup versus Scheduled Production Time 160
Performance 160
Setup and Cleanup 160
Decreased Speeds and Minor Stoppages 162
Increased Speeds 163
18 Saleable Product versus Product Produced 166
Quality 166
Reference 171
19 Paper 172
Paper Dimensioning 172
Paper Grades 173
Paper Coatings 175
Paper for Flexible Packaging 176
References 177
20 Foil 178
Production 178
Converting 180
Commercial Trends 181
References 182
21 Unoriented Plastic Films 184
Flexible Films 184
Cast 186
Tubular 187
General Film Property Effects 189
References 192
22 Oriented Plastic Films 194
Film Orientation 195
Oriented Film Applications 197
Cast (Tenter) 197
Tubular (Bubble) 199
Special Oriented Film Effects 200
References 202
23 Bulk Polyolefin Resins 204
Polymer Structure 204
Functional Description 206
Intrinsic Material Characteristics 207
Value Provided 211
Forms Used 212
Reference 213
24 Specialty Sealant and Adhesive Resins and Additives 214
Polymer Structure 215
Alpha-Olefin Comonomers 216
Additives 217
Functional Advantages 218
Ethylene Vinyl Acetate 219
Ethylene Methyl Acrylate 219
Ethylene Acrylic Acid 220
Ionomer 220
Alpha-Olefin Copolymers (LLDPE and mLLDPE) 221
25 Barrier Resins 224
Barrier Kinetics 224
Polyvinylidene Chloride 231
Ethylene Vinyl Alcohol 232
Nylon 233
Coextrusion 233
References 234
26 Inks 236
Ink Vehicles 236
Ink Pigments 238
Ink Curing 239
Ink Selection 240
References 242
27 Overprint Varnishes and Coatings 244
Overprint Varnish 244
Coating Integrity 245
Vacuum Deposition 246
Reference 249
28 Adhesives 250
Polyurethane Adhesives 251
Acrylic-Based Adhesives 253
Energy-Cured Adhesives 254
References 255
29 Primers 256
Polyethylene Imide Primers 256
Ethylene Acrylic Acid Copolymer Primers 258
Other Primers 259
Primer Selection 259
Reference 260
30 Conditioning 262
Standard Conditioning 263
Special Conditioning 264
References 265
31 Intrinsic Material Properties 268
Standards 270
Intrinsic Property Influences 270
Case Study: Intrinsic Property Influences 272
32 Secondary Quality Characteristics 276
Containment Integrity Characteristics 281
Protection/Preservation Characteristics 283
Transportation Integrity Characteristics 289
Communication Integrity Characteristics 291
Flexible Packaging Material Specifications 291
References 293
Index 294

1

Basics of Web Processes


This chapter summarizes common components of web-based processes. These processes involve long thin strips (“webs”) of various materials rolled onto a cylindrical core with length approximately equal to the width of the stip. The rolls will later be unwound for their eventual use. The mechanics of winding and unwinding observe very basic principles of physics. Tension, nip pressure, and torque are the physical forces used to control webs during various manufacturing processes. Understanding specific flexible packaging manufacturing processes requires at least a semiquantitative appreciation of the meaning and interactions of these forces. Industry measures including “yield” and “basis weight” must also be understood for further study of flexible packaging manufacturing.

Keywords


Cross-web variation; dimensional analysis; down web variation; nip pressure; rewind designation; roll length estimation; torque units of measure; web tension; web winding

Chapter Outline

Essentially all flexible packaging converting processes involve rolls of web materials (thin materials, manufactured and processed in the form of a continuous, flexible strip). The full length of the strip represents the “machine direction” and its width, the “cross direction”. Equipment pulls material from the roll and then modifies it in some way that increases its suitability for use as a package. If the eventual fit-for-use packaging material requires several converting processes, the equipment will rewind the modified material into roll form again. The basic flexible packaging converting processes are printing, laminating, and slitting. The modifications at each stage are generically called “value-adding” processes and they form the basis for converters’ selling margins over their costs of purchased raw material.

Web handling in general reflects a dynamic, but otherwise simple, model of Newton’s laws of motion:

1. Any object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it.

2. Force applied to a material accelerates it in direct proportion to its mass; the direction of acceleration is the same as that of the applied force.

3. For every action there is an equal and opposite reaction.

These and related “laws” of classical mechanics make web handling a model system for mechanical engineering science to understand and control web processes. The physical and mathematical relationships developed by this science to describe and design web processes involve several sophisticated concepts. This chapter can only highlight some of the powerful insights of the science when designing and operating web handling equipment, but the interested reader can find more detailed sources in the further reading chapter.1

Web Tension


“Pulling” a web off an unwinding roll and rolling it onto a rewinding one presents major mechanical issues. A force must be applied to the unwinding web. The general term for this force is called “tension.” Tension in web converting is often expressed in terms of “pounds per linear inch (PLI).” The units reflect the actual force pulling the web divided by its width (without regard to the thickness of the web material). Web process conditions typically report only this value. To better understand the physical effects of tension on a material, its “tensile stress” must be recognized. Instead of force per unit width, this measure addresses force per unit area, “pounds per inch2.” This value relates directly to laboratory measures of tensile properties, an “Intrinsic Property” of the web material (Chapter 31).2

Tension applied to a web may not only pull it off the unwind roll, but also stretch it, or even break it (depending on the web’s tensile properties). Flexible plastic films in particular have tensile and elongation properties that can result in diversion of some of the applied unwind force to stretching the film (Figure 1.1). When cross-web length variation (called “bagginess”) is present, the stretching force can sometimes “pull out” the bagginess, so that the web appears to lie in a flat plane to observers as well as to the mechanics of the value-adding processes.


Figure 1.1 Distortion of plastic film in response to applied force. Force is applied to web at an unwind, the web resists, the roll turns, releasing web, at the same time the web itself deforms and reshapes.

In addition to moving the web through the equipment to the unwind, tension on the web helps to resist side to side movement, to reduce drooping (“catenary” effect) in horizontal spans between supports, and to establish friction against rollers along the web path and in the rewinding roll itself.

Web Winding


The rewind roll of a web process represents a protective means of storing the web for subsequent use in converting or at an end user. Consideration of the winding step itself reveals many of the additional mechanical considerations critical to successful web processes. Consistent winding of an excellent roll involves three critical factors at the rewind: Tension of the web as it wraps onto the roll; Nip pressure of drum or roller that presses down on the winding web; Torque of the rotating roll as it winds more web material onto itself. Controlling various combinations of “T N T” factors at different points along the whole web process provides the essence of its design and operation. Tension was described above. Torque is simply a “turning” force, which is the one acting in a clockwise or counterclockwise, rather than a linear direction. Nip represents a point along the process at which two rollers contact the web at the same time. One or both of these rollers are “driven,” that is, having torque applied to them (using a DC motor, a fluid motor, or a slip clutch). Surface friction between the roll(s) and web’s surface controls the web’s speed, lateral position, tension, etc.

Excellence for web winding (called “good roll formation”) implies an overall cylindrical shape (i.e., circular cross-section), lateral alignment of web edges on both sides (i.e., even from core to top of roll), and centered placement on the core. Because the roll itself represents a convenient interim storage state for the web, it must of course be “unwindable.” “Blocked” is the term used to describe the condition in which one wrap of the web on a roll adheres to an adjacent one. Blocking prevents unwinding and often tears the web. Block-prone webs require a thin layer of air between wraps of a roll, generally referred to as winding a “soft” roll. Tensile and surface properties of the web mean different TNT combinations provide optimum roll formation for a particular web. Three types of winding processes can adapt to the range of properties anticipated in a particular industry:

1. Center winding: a rotating rewind shaft turns the core that holds the winding roll in order to apply a tension to the web.

2. Surface winding: rotating drum(s) on the surface of the winding roll apply tension to the web.

3. Center–surface winding: both rotating rewind shaft and rotating drum apply a tension to the web.

Table 1.1 summarizes how these winding processes apply the TNT factors to webs.

Table 1.1

Comparison of Winding Processes

Generic winding type Torque Gap Torque–gap
Nip present Lay on roller ½ driven drum rollers Driven lay on roller
Torque applied to Spindle shaft Drum roller(s) Spindle/drum roller
Web tension source Torque from spindle Nip with drum(s) Nip lay on roller
Roll hardness control Tension and nip Nip at drum Torque from spindle
Roll hardness range Softer Harder Softer
Typical web Plastic films Inelastic materials ↑slip and ↑diameter

All along web processes, TNT factors control movement of the web through the overall process. Many value-adding steps themselves represent nip points (e.g., applying inks, adhesives; laminating webs to one another). The combination of friction, adhesion, and lubrication between a web and any roller surfaces is called “traction.” Traction between a web and a roller along the process can transfer some of the web’s energy to the roller and cause it to rotate if the roller is properly lubricated. Traction at a nip changes the tension of the web relative to the force between nip rollers, the...

PDFPDF (Adobe DRM)
Größe: 9,4 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

EPUBEPUB (Adobe DRM)

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
And Rebuild Our American Healthcare System

von William Queale

eBook Download (2023)
Lioncrest Publishing (Verlag)
7,49
Navigating the Exams as Applications of Data Science

von Fred Szabo; Ping Wang

eBook Download (2024)
Elsevier Science (Verlag)
51,95