Ideals, Varieties, and Algorithms (eBook)

An Introduction to Computational Algebraic Geometry and Commutative Algebra
eBook Download: PDF
2015 | 4th ed. 2015
XVI, 646 Seiten
Springer International Publishing (Verlag)
978-3-319-16721-3 (ISBN)

Lese- und Medienproben

Ideals, Varieties, and Algorithms - David A Cox, John Little, Donal O'Shea
Systemvoraussetzungen
51,16 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates a variety of ways to proceed with the material once these chapters are covered. In addition to the fundamentals of algebraic geometry—the elimination theorem, the extension theorem, the closure theorem and the Nullstellensatz—this new edition incorporates several substantial changes, all of which are listed in the Preface. The largest revision incorporates a new Chapter (ten), which presents some of the essentials of progress made over the last decades in computing Gröbner bases. The book also includes current computer algebra material in Appendix C and updated independent projects (Appendix D).The book may serve as a first or second course in undergraduate abstract algebra and with some supplementation perhaps, for beginning graduate level courses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. Appendix C describes features of Maple™, Mathematica® and Sage, as well as other systems that are most relevant to the text. Pseudocode is used in the text; Appendix B carefully describes the pseudocode used.From the reviews of previous editions: “…The book gives an introduction to Buchberger’s algorithm with applications to syzygies, Hilbert polynomials, primary decompositions. There is an introduction to classical algebraic geometry with applications to the ideal membership problem, solving polynomial equations and elimination theory. …The book is well-written. …The reviewer is sure that it will be an excellent guide to introduce further undergraduates in the algorithmic aspect of commutative algebra and algebraic geometry.”  —Peter Schenzel, zbMATH, 2007 “I consider the book to be wonderful. The exposition is very clear, there are many helpful pictures and there are a great many instructive exercises, some quite challenging. offers the heart and soul of modern commutative and algebraic geometry.”  —The American Mathematical Monthly

David A. Cox is currently Professor of Mathematics at Amherst College. John Little is currently Professor of Mathematics at College of the Holy Cross. Donal O'Shea is currently President and Professor of Mathematics at New College of Florida.  

Preface.- Notation for Sets and Functions.- 1. Geometry, Algebra, and Algorithms.- 2. Groebner Bases.- 3. Elimination Theory.- 4.The Algebra-Geometry Dictionary.- 5. Polynomial and Rational Functions on a Variety.- 6. Robotics and Automatic Geometric Theorem Proving.- 7. Invariant Theory of Finite Groups.- 8. Projective Algebraic Geometry.- 9. The Dimension of a Variety.- 10. Additional Groebner Basis Algorithms.- Appendix A. Some Concepts from Algebra.- Appendix B. Pseudocode.- Appendix C. Computer Algebra Systems.- Appendix D. Independent Projects.- References.- Index.  

Erscheint lt. Verlag 30.4.2015
Reihe/Serie Undergraduate Texts in Mathematics
Verlagsort Cham
Sprache englisch
Schlagworte algebraic geometry textbook adoption • algorithms algebraic geometry • CoCoA algebraic geometry • computational algebraic geometry • Groebner basis • Hilbert Basis Theorem • Invariant theory • Macaulay2 algebraic geometry • Maple algebraic geometry • Mathematica algebraic geometry • Nullstellensatz • Projective Geometry • Sage algebraic geometry
ISBN-10 3-319-16721-9 / 3319167219
ISBN-13 978-3-319-16721-3 / 9783319167213
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.