Ideals, Varieties, and Algorithms (eBook)
XVI, 646 Seiten
Springer International Publishing (Verlag)
978-3-319-16721-3 (ISBN)
David A. Cox is currently Professor of Mathematics at Amherst College. John Little is currently Professor of Mathematics at College of the Holy Cross. Donal O'Shea is currently President and Professor of Mathematics at New College of Florida.
Preface.- Notation for Sets and Functions.- 1. Geometry, Algebra, and Algorithms.- 2. Groebner Bases.- 3. Elimination Theory.- 4.The Algebra-Geometry Dictionary.- 5. Polynomial and Rational Functions on a Variety.- 6. Robotics and Automatic Geometric Theorem Proving.- 7. Invariant Theory of Finite Groups.- 8. Projective Algebraic Geometry.- 9. The Dimension of a Variety.- 10. Additional Groebner Basis Algorithms.- Appendix A. Some Concepts from Algebra.- Appendix B. Pseudocode.- Appendix C. Computer Algebra Systems.- Appendix D. Independent Projects.- References.- Index.
Erscheint lt. Verlag | 30.4.2015 |
---|---|
Reihe/Serie | Undergraduate Texts in Mathematics |
Verlagsort | Cham |
Sprache | englisch |
Schlagworte | algebraic geometry textbook adoption • algorithms algebraic geometry • CoCoA algebraic geometry • computational algebraic geometry • Groebner basis • Hilbert Basis Theorem • Invariant theory • Macaulay2 algebraic geometry • Maple algebraic geometry • Mathematica algebraic geometry • Nullstellensatz • Projective Geometry • Sage algebraic geometry |
ISBN-10 | 3-319-16721-9 / 3319167219 |
ISBN-13 | 978-3-319-16721-3 / 9783319167213 |
Haben Sie eine Frage zum Produkt? |
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.