Diophantine Equations and Inequalities in Algebraic Number Fields
Seiten
1991
Springer Berlin (Hersteller)
978-3-540-52019-1 (ISBN)
Springer Berlin (Hersteller)
978-3-540-52019-1 (ISBN)
- Lieferbar
- Versandkostenfrei innerhalb Deutschlands
- Auch auf Rechnung
- Verfügbarkeit in der Filiale vor Ort prüfen
- Artikel merken
...gebraucht verfügbar!
This text offers instances of generalizations of important results on diophantine equations and inequalities over rational fields to algebraic number fields. Topics included are an account of Siegel's generalized circle method and its application to Waring's problem, and Schmidt's method.
The classical circle method of Hardy and Littlewood is one of the most effective methods of additive number theory. Two examples are its success with Waring's problem and Goldbach's conjecture. In this book, Wang offers instances of generalizations of important results on diophantine equations and inequalities over rational fields to algebraic number fields. The book also contains an account of Siegel's generalized circle method and its applications to Waring's problem and additive equations and an account of Schmidt's method on diophantine equations and inequalities in several variables in algebraic number fields.
Sprache | englisch |
---|---|
Gewicht | 492 g |
Einbandart | gebunden |
Schlagworte | Algebraische Zahlentheorie • Analysis • Diophantische Gleichung • Ungleichungen |
ISBN-10 | 3-540-52019-8 / 3540520198 |
ISBN-13 | 978-3-540-52019-1 / 9783540520191 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Schulbuch Klassen 7/8 (G9)
Buch | Hardcover (2015)
Klett (Verlag)
31,50 €
Buch | Softcover (2004)
Cornelsen Verlag
25,99 €