Geometric Algorithms and Combinatorial Optimization
Seiten
1993
|
3., Printing
Springer Berlin (Verlag)
978-3-540-56740-0 (ISBN)
Springer Berlin (Verlag)
978-3-540-56740-0 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. It offers a unifying approach which is based on two fundamental geometric algorithms: the ellipsoid method for finding a point in a convex set and the basis reduction method for point lattices. This book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. The first edition of this book was received enthusiastically by the community of discrete mathematicians, combinatorial optimizers, operations researchers, and computer scientists. To quote just from a few reviews: "The book is written in a very grasping way, legible both for people who are interested in the most important results and for people who are interested in technical details and proofs." #manuscripta geodaetica
Prof. Dr. Dr. h.c. mult. Martin Grötschel, Technische Universität Berlin, Zuse-Institut Berlin (ZIB) und MATHEON.
László Lovász ist einer der Leiter der theoretischen Forschungsabteilung der Microsoft Corporation. Er hat 1999 den Wolf-Preis sowie den Gödel-Preis für die beste wissenschaftliche Veröffentlichung in der Informatik erhalten.
Reihe/Serie | Algorithms and Combinatorics |
---|---|
Sprache | englisch |
Maße | 170 x 242 mm |
Gewicht | 738 g |
Einbandart | gebunden |
Schlagworte | Algorithmische Geometrie • Basisreduktion bei Gittern • Ellipsoidmethode • Kombinatorische Optimierung • Konvexität • Lineares Programmieren |
ISBN-10 | 3-540-56740-2 / 3540567402 |
ISBN-13 | 978-3-540-56740-0 / 9783540567400 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |