Batteries for Implantable Biomedical Devices
Kluwer Academic / Plenum Publishers (Verlag)
978-0-306-42148-8 (ISBN)
- Titel ist leider vergriffen;
keine Neuauflage - Artikel merken
1. Electrically Driven Implantable Prostheses.- 1. General Background.- 1.1. Physiology, Medical Significance, and History.- 1.2. Electronic Circuit Technology.- 2. Devices Background.- 2.1. Heart Pacing Systems.- 2.2. Cardiac Pacing Leads.- 2.3. Automatic Implantable Defibrillator.- 2.4. Bone Growth and Repair.- 2.5. Other Devices.- 3. Business Aspects.- 4. Future Directions.- References.- 2. Key Events in the Evolution of Implantable Pacemaker Batteries.- 1. Introduction.- 2. An Interview with Samuel Ruben.- 3. An Interview with Wilson Greatbatch.- References.- 3. Lithium Primary Cells for Power Sources.- 1. Introduction.- 2. The Elements of a Battery.- 2.1. Anode.- 2.2. Cathode.- 2.3. Electrolyte/Separator.- 2.4. Feedthrough.- 3. Battery Parameters.- 4. Battery Performance.- 5. Microcalorimetry.- 6. Implantable Battery Chemistries.- References.- 4. Evaluation Methods.- 1. Evaluation Objectives.- 1.1. Performance Data.- 1.2. Reliability Data.- 1.3. Quality Assurance.- 2. Accelerated Testing.- 2.1. Empirical Approach.- 2.2. Statistical Approach.- 2.3. Physicochemical Approach.- 2.4. Accelerated Testing without Failure.- 2.5. Designing an Accelerated Life Test.- 2.6. Other Acceleration Methods.- 3. Nonaccelerated Testing.- 3.1. Real-Time Tests.- 3.2. Materials Testing.- 3.3. Microcalorimetry.- 4. Qualification Protocol.- 4.1 Sample Qualification Plan.- 5. Data Analysis.- 5.1. Longevity Projections.- 5.2. Statistical Evaluation of Battery Longevity.- References.- 5. Battery Performance Modeling.- 1. Description of the Problem.- 2. Importance of the Solution.- 3. Description of the Variables and Relationships.- 4. Classification of Models.- 5. Statistical Methods.- 5.1. Self-Discharge.- 5.2. Polarization.- 6. Modeling of the Lithium/Iodine Pacemaker Battery.- 7. Device Longevity.- 7.1. Pulse Generator Hardware.- 8. Conclusion.- References.- 6. Lithium/Halogen Batteries.- 1. Introduction.- 2. General Features of Lithium/Halogen Solid Electrolyte Batteries.- 2.1. Thermodynamic Considerations.- 2.2. Kinetic Considerations.- 3. The Lithium/Bromine System.- 3.1. General Considerations.- 3.2. The Li/Br2-PVP Cell.- 3.3. Other Cathode Formulations.- 3.4. Summary.- 4. Chemistry of the Lithium/Iodine-Poly vinylpyridine System.- 4.1. Cell Reaction.- 4.2. The Lithium Anode.- 4.3. The Cathode Material.- 4.4. The Electrolyte/Separator.- 5. Construction of Lithium/Iodine-PVP Cells.- 5.1. Principles of Cell Design.- 5.2. The Central Anode/Case-Neutral Design.- 5.3. The Central Cathode/Case-Neutral Design.- 5.4. The Central Anode/Case-Grounded Design.- 5.5. Central Anode/Case-Grounded Pelletized Cathode Cells.- 6. Discharge Characteristics of the Li/I2-PVP Battery.- 6.1. General Considerations.- 6.2. Discharge Characteristics at Application Current Drain.- 6.3. The Effect of Current Drain on Cell Performance.- 6.4. Self-Discharge.- 6.5. Modeling and Accelerated Testing.- 7. Performance of the Li/I2-PVP Cell.- 7.1. General Remarks.- 7.2. The Approach to Cell Reliability.- 7.3. Performance of Life Test Batteries.- 7.4. Performance of the Li/I2-PVP Cell in Cardiac Pacemakers.- 8. Summary and Conclusion.- References.- 7. Lithium Solid Cathode Batteries for Biomedical Implantable Applications.- 1. Introduction.- 2. General Features of Lithium Solid Cathode Systems.- 2.1. Thermodynamic Considerations.- 2.2. Some Properties of Electrodes and Electrolytes.- 2.3. Electrode and Cell Configurations.- 3. Specific Systems Used for Biomedical Applications.- 3.1. The Lithium-Silver Chromate Organic Electrolyte System.- 3.2. The Lithium-Cupric Sulfide Organic Electrolyte Battery.- 3.3. The Lithium-Vanadium Pentoxide Organic Electrolyte System.- 3.4. The Lithium-Manganese Dioxide Cell.- 3.5. Solid Electrolyte Lithium Cells.- 4. Use of Lithium Solid Cathode Systems in Implanted Medical Devices.- 4.1. Lithium-Silver Chromate.- 4.2. Lithium-Cupric Sulfide.- 4.3. Lithium-Vanadium Pentoxide.- 4.4. Lithium-Manganese Dioxide.- 4.5. Lithium-Lead Iodide, Lead Sulfide.- 5. Summary and Conclusions.- References.- 8. Lithium-Liquid Oxidant Batteries.- 1. Introduction.- 2. Description of the System.- 2.1. Liquid Oxidant Systems.- 2.2. Cell Reaction.- 2.3. Principles of Operation.- 3. Capacity and Energy Density.- 3.1. Classification of Losses.- 3.2. Stoichiometric Energy and Capacity Density.- 3.3. Capacity Density of Practical Electrodes.- 3.4. Packaging Efficiency.- 3.5. Electrochemical Efficiency.- 4. State-of-Discharge Indication.- 5. Voltage Delay.- 5.1. Anode Passivation.- 5.2. Alleviation of Voltage Delay.- 6. Safety.- 6.1. Short Circuit.- 6.2. Overdischarge.- 6.3. Charging.- 6.4. Casual Storage.- 6.5. Disposal.- 6.6. Future.- References.- 9. Mercury Batteries for Pacemakers and Other Implantable Devices.- 1. Background.- 2. Chemistry.- 3. Cell Design and Performance Characteristics.- References.- 10. Rechargeable Electrochemical Cells as Implantable Power Sources.- 1. Introduction.- 2. Nickel Oxide/Cadmium Cells.- 2.1. Brief History.- 2.2. General Nickel Oxide/Cadmium Cell Characteristics.- 2.3. The Nickel Oxide/Cadmium Pacemaker Cell.- 3. Rechargeable Mercuric Oxide/Zinc Cells.- 3.1. Brief History.- 3.2. Cell Chemistry and Construction.- 3.3. Cell Performance.- 4. Prospects for Future Use of Rechargeable Cells.- References.- 11. Nuclear Batteries for Implantable Applications.- 1. General Description of Nuclear Batteries.- 1.1. Description of Isotopic Decay.- 1.2. Types of Nuclear Batteries.- 2. Isotope Selection.- 2.1. General Parameters.- 2.2. Isotope Longevity.- 2.3. Isotope Comparisons.- 3. Detailed Characteristics of the Plutonium-238 Isotope.- 3.1. Fuel Form.- 3.2. Types of Radiation.- 3.3. Helium Release.- 4. Thermoelectric Generator Systems.- 4.1. Nuclear Battery Subsystems.- 4.2. Biosphere Protection.- 4.3. Operating Environment Design Requirements.- 5. Thermopile Design.- 5.1. Seebeck Effect.- 5.2. Thermal and Electrical Performance.- 5.3. Material Characteristics.- 5.4. Design Optimization.- 6. Insulation Design and Selection.- 7. Fuel Capsule Design.- 7.1. General Description.- 7.2. Helium Pressure.- 7.3. Capsule Material.- 7.4. Capsule Geometry.- 7.5. Capsule Stress Analysis.- 7.6. Credible Accident Testing.- 8. Thermal Analysis.- 9. Electrical Characteristics.- 10. Radiation Effects.- 10.1. Somatic Effects.- 10.2. Genetic Effects.- 10.3. Public Exposure.- 11. Licensing Requirements.- 12. Applications of Nuclear Batteries.- 13. Nuclear Battery Reliability.- References.
Erscheint lt. Verlag | 30.4.1986 |
---|---|
Zusatzinfo | 81 black & white illustrations, biography |
Verlagsort | Dordrecht |
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie ► Physikalische Chemie |
ISBN-10 | 0-306-42148-8 / 0306421488 |
ISBN-13 | 978-0-306-42148-8 / 9780306421488 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich