Für diesen Artikel ist leider kein Bild verfügbar.

Batteries for Implantable Biomedical Devices

(Autor)

Buch | Hardcover
380 Seiten
1986
Kluwer Academic / Plenum Publishers (Verlag)
978-0-306-42148-8 (ISBN)
85,55 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Small sealed electrochemical power units have developed remarkably in the last two decades owing to improvements in technology and a greater understanding of the underlying basic sciences. These high-energy-density sealed battery sys- tems have made possible the safe and rapid development of lightweight implant- able electrical devices, some of which, such as heart pacers, have reached a large market. In most of these devices the battery constitutes the majority of the device volume and weight, and limits the useful life. This book on Batteries for Implantable Biomedical Devices will be highly welcome to those interested in devices for heart pacing, pain suppression, bone repair, bone fusion, heart assist, and diabetes control, as well as numerous other biomedical devices that depend on sealed batteries. However, the material will also be extremely useful to a much broader audience, including those concerned with sealed batteries for such other difficult environments as space, the sea and remote locations.

1. Electrically Driven Implantable Prostheses.- 1. General Background.- 1.1. Physiology, Medical Significance, and History.- 1.2. Electronic Circuit Technology.- 2. Devices Background.- 2.1. Heart Pacing Systems.- 2.2. Cardiac Pacing Leads.- 2.3. Automatic Implantable Defibrillator.- 2.4. Bone Growth and Repair.- 2.5. Other Devices.- 3. Business Aspects.- 4. Future Directions.- References.- 2. Key Events in the Evolution of Implantable Pacemaker Batteries.- 1. Introduction.- 2. An Interview with Samuel Ruben.- 3. An Interview with Wilson Greatbatch.- References.- 3. Lithium Primary Cells for Power Sources.- 1. Introduction.- 2. The Elements of a Battery.- 2.1. Anode.- 2.2. Cathode.- 2.3. Electrolyte/Separator.- 2.4. Feedthrough.- 3. Battery Parameters.- 4. Battery Performance.- 5. Microcalorimetry.- 6. Implantable Battery Chemistries.- References.- 4. Evaluation Methods.- 1. Evaluation Objectives.- 1.1. Performance Data.- 1.2. Reliability Data.- 1.3. Quality Assurance.- 2. Accelerated Testing.- 2.1. Empirical Approach.- 2.2. Statistical Approach.- 2.3. Physicochemical Approach.- 2.4. Accelerated Testing without Failure.- 2.5. Designing an Accelerated Life Test.- 2.6. Other Acceleration Methods.- 3. Nonaccelerated Testing.- 3.1. Real-Time Tests.- 3.2. Materials Testing.- 3.3. Microcalorimetry.- 4. Qualification Protocol.- 4.1 Sample Qualification Plan.- 5. Data Analysis.- 5.1. Longevity Projections.- 5.2. Statistical Evaluation of Battery Longevity.- References.- 5. Battery Performance Modeling.- 1. Description of the Problem.- 2. Importance of the Solution.- 3. Description of the Variables and Relationships.- 4. Classification of Models.- 5. Statistical Methods.- 5.1. Self-Discharge.- 5.2. Polarization.- 6. Modeling of the Lithium/Iodine Pacemaker Battery.- 7. Device Longevity.- 7.1. Pulse Generator Hardware.- 8. Conclusion.- References.- 6. Lithium/Halogen Batteries.- 1. Introduction.- 2. General Features of Lithium/Halogen Solid Electrolyte Batteries.- 2.1. Thermodynamic Considerations.- 2.2. Kinetic Considerations.- 3. The Lithium/Bromine System.- 3.1. General Considerations.- 3.2. The Li/Br2-PVP Cell.- 3.3. Other Cathode Formulations.- 3.4. Summary.- 4. Chemistry of the Lithium/Iodine-Poly vinylpyridine System.- 4.1. Cell Reaction.- 4.2. The Lithium Anode.- 4.3. The Cathode Material.- 4.4. The Electrolyte/Separator.- 5. Construction of Lithium/Iodine-PVP Cells.- 5.1. Principles of Cell Design.- 5.2. The Central Anode/Case-Neutral Design.- 5.3. The Central Cathode/Case-Neutral Design.- 5.4. The Central Anode/Case-Grounded Design.- 5.5. Central Anode/Case-Grounded Pelletized Cathode Cells.- 6. Discharge Characteristics of the Li/I2-PVP Battery.- 6.1. General Considerations.- 6.2. Discharge Characteristics at Application Current Drain.- 6.3. The Effect of Current Drain on Cell Performance.- 6.4. Self-Discharge.- 6.5. Modeling and Accelerated Testing.- 7. Performance of the Li/I2-PVP Cell.- 7.1. General Remarks.- 7.2. The Approach to Cell Reliability.- 7.3. Performance of Life Test Batteries.- 7.4. Performance of the Li/I2-PVP Cell in Cardiac Pacemakers.- 8. Summary and Conclusion.- References.- 7. Lithium Solid Cathode Batteries for Biomedical Implantable Applications.- 1. Introduction.- 2. General Features of Lithium Solid Cathode Systems.- 2.1. Thermodynamic Considerations.- 2.2. Some Properties of Electrodes and Electrolytes.- 2.3. Electrode and Cell Configurations.- 3. Specific Systems Used for Biomedical Applications.- 3.1. The Lithium-Silver Chromate Organic Electrolyte System.- 3.2. The Lithium-Cupric Sulfide Organic Electrolyte Battery.- 3.3. The Lithium-Vanadium Pentoxide Organic Electrolyte System.- 3.4. The Lithium-Manganese Dioxide Cell.- 3.5. Solid Electrolyte Lithium Cells.- 4. Use of Lithium Solid Cathode Systems in Implanted Medical Devices.- 4.1. Lithium-Silver Chromate.- 4.2. Lithium-Cupric Sulfide.- 4.3. Lithium-Vanadium Pentoxide.- 4.4. Lithium-Manganese Dioxide.- 4.5. Lithium-Lead Iodide, Lead Sulfide.- 5. Summary and Conclusions.- References.- 8. Lithium-Liquid Oxidant Batteries.- 1. Introduction.- 2. Description of the System.- 2.1. Liquid Oxidant Systems.- 2.2. Cell Reaction.- 2.3. Principles of Operation.- 3. Capacity and Energy Density.- 3.1. Classification of Losses.- 3.2. Stoichiometric Energy and Capacity Density.- 3.3. Capacity Density of Practical Electrodes.- 3.4. Packaging Efficiency.- 3.5. Electrochemical Efficiency.- 4. State-of-Discharge Indication.- 5. Voltage Delay.- 5.1. Anode Passivation.- 5.2. Alleviation of Voltage Delay.- 6. Safety.- 6.1. Short Circuit.- 6.2. Overdischarge.- 6.3. Charging.- 6.4. Casual Storage.- 6.5. Disposal.- 6.6. Future.- References.- 9. Mercury Batteries for Pacemakers and Other Implantable Devices.- 1. Background.- 2. Chemistry.- 3. Cell Design and Performance Characteristics.- References.- 10. Rechargeable Electrochemical Cells as Implantable Power Sources.- 1. Introduction.- 2. Nickel Oxide/Cadmium Cells.- 2.1. Brief History.- 2.2. General Nickel Oxide/Cadmium Cell Characteristics.- 2.3. The Nickel Oxide/Cadmium Pacemaker Cell.- 3. Rechargeable Mercuric Oxide/Zinc Cells.- 3.1. Brief History.- 3.2. Cell Chemistry and Construction.- 3.3. Cell Performance.- 4. Prospects for Future Use of Rechargeable Cells.- References.- 11. Nuclear Batteries for Implantable Applications.- 1. General Description of Nuclear Batteries.- 1.1. Description of Isotopic Decay.- 1.2. Types of Nuclear Batteries.- 2. Isotope Selection.- 2.1. General Parameters.- 2.2. Isotope Longevity.- 2.3. Isotope Comparisons.- 3. Detailed Characteristics of the Plutonium-238 Isotope.- 3.1. Fuel Form.- 3.2. Types of Radiation.- 3.3. Helium Release.- 4. Thermoelectric Generator Systems.- 4.1. Nuclear Battery Subsystems.- 4.2. Biosphere Protection.- 4.3. Operating Environment Design Requirements.- 5. Thermopile Design.- 5.1. Seebeck Effect.- 5.2. Thermal and Electrical Performance.- 5.3. Material Characteristics.- 5.4. Design Optimization.- 6. Insulation Design and Selection.- 7. Fuel Capsule Design.- 7.1. General Description.- 7.2. Helium Pressure.- 7.3. Capsule Material.- 7.4. Capsule Geometry.- 7.5. Capsule Stress Analysis.- 7.6. Credible Accident Testing.- 8. Thermal Analysis.- 9. Electrical Characteristics.- 10. Radiation Effects.- 10.1. Somatic Effects.- 10.2. Genetic Effects.- 10.3. Public Exposure.- 11. Licensing Requirements.- 12. Applications of Nuclear Batteries.- 13. Nuclear Battery Reliability.- References.

Erscheint lt. Verlag 30.4.1986
Zusatzinfo 81 black & white illustrations, biography
Verlagsort Dordrecht
Sprache englisch
Themenwelt Naturwissenschaften Chemie Physikalische Chemie
ISBN-10 0-306-42148-8 / 0306421488
ISBN-13 978-0-306-42148-8 / 9780306421488
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Quantenmechanik | Spektroskopie | Statistische Thermodynamik

von Sebastian Seiffert; Wolfgang Schärtl

Buch | Softcover (2024)
De Gruyter (Verlag)
59,95
Thermodynamik | Kinetik | Elektrochemie

von Sebastian Seiffert; Wolfgang Schärtl

Buch | Softcover (2024)
De Gruyter (Verlag)
59,95

von Peter W. Atkins; Julio de Paula; James J. Keeler

Buch | Hardcover (2021)
Wiley-VCH (Verlag)
85,90