Spin Dynamics - Malcolm H. Levitt

Spin Dynamics

Basics of Nuclear Magnetic Resonance
Buch | Hardcover
752 Seiten
2008 | 2nd edition
John Wiley & Sons Inc (Verlag)
978-0-470-51118-3 (ISBN)
222,51 inkl. MwSt
Spin Dynamics: Basics of Nuclear Magnetic Resonance, Second Edition is a comprehensive and modern introduction which focuses on those essential principles and concepts needed for a thorough understanding of the subject, rather than the practical aspects.
Spin Dynamics: Basics of Nuclear Magnetic Resonance, Second Edition is a comprehensive and modern introduction which focuses on those essential principles and concepts needed for a thorough understanding of the subject, rather than the practical aspects. The quantum theory of nuclear magnets is presented within a strong physical framework, supported by figures.  The book assumes only a basic knowledge of complex numbers and matrices, and provides the reader with numerous worked examples and exercises to encourage understanding. With the explicit aim of carefully developing the subject from the beginning, the text starts with coverage of quarks and nucleons and progresses through to a detailed explanation of several important NMR experiments, including NMR imaging, COSY, NOESY and TROSY. 

Completely revised and updated, the Second Edition features new material on the properties and distributions of isotopes, chemical shift anisotropy and quadrupolar interactions, Pake patterns, spin echoes, slice selection in NMR imaging, and a complete new chapter on the NMR spectroscopy of quadrupolar nuclei. New appendices have been included on Euler angles, and coherence selection by field gradients. As in the first edition, all material is heavily supported by graphics, much of which is new to this edition. 

Written for undergraduates and postgraduate students taking a first course in NMR spectroscopy and for those needing an up-to-date account of the subject, this multi-disciplinary book will appeal to chemical, physical, material, life, medical, earth and environmental scientists. The detailed physical insights will also make the book of interest for experienced spectroscopists and NMR researchers. 

• An accessible and carefully written introduction, designed to help students to fully understand this complex and dynamic subject

• Takes a multi-disciplinary approach, focusing on basic principles and concepts rather than the more practical aspects

• Presents a strong pedagogical approach throughout, with emphasis placed on individual spins to aid understanding

• Includes numerous worked examples, problems, further reading and additional notes

Praise from the reviews of the First Edition:

"This is an excellent book... that many teachers of NMR spectroscopy will cherish... It deserves to be a ‘classic’ among NMR spectroscopy texts." NMR IN BIOMEDICINE

"I strongly recommend this book to everyone…it is probably the best modern comprehensive description of the subject." ANGEWANDTE CHEMIE, INTERNATIONAL EDITION

Professor Malcolm Levitt, School of Chemistry,?University of Southampton, UK.

Preface xxi

Preface to the First Edition xxiii

Introduction 1

Part 1 Nuclear Magnetism 3

1 Matter 5

1.1 Atoms and Nuclei 5

1.2 Spin 5

1.3 Nuclei 9

1.4 Nuclear Spin 12

1.5 Atomic and Molecular Structure 15

2 Magnetism 23

2.1 The Electromagnetic Field 23

2.2 Macroscopic Magnetism 23

2.3 Microscopic Magnetism 25

2.4 Spin Precession 26

2.5 Larmor Frequency 29

2.6 Spin–Lattice Relaxation: Nuclear Paramagnetism 30

2.7 Transverse Magnetization and Transverse Relaxation 33

2.8 NMR Signal 36

2.9 Electronic Magnetism 36

3 NMR Spectroscopy 39

3.1 A Simple Pulse Sequence 39

3.2 A Simple Spectrum 39

3.3 Isotopomeric Spectra 42

3.4 Relative Spectral Frequencies: Case of Positive Gyromagnetic Ratio 44

3.5 Relative Spectral Frequencies: Case of Negative Gyromagnetic Ratio 46

3.6 Inhomogeneous Broadening 48

3.7 Chemical Shifts 50

3.8 J-Coupling Multiplets 56

3.9 Heteronuclear Decoupling 59

Part 2 The NMR Experiment 63

4 The NMR Spectrometer 65

4.1 The Magnet 65

4.2 The Transmitter Section 66

4.3 The Duplexer 69

4.4 The Probe 70

4.5 The Receiver Section 72

4.6 Overview of the Radio-Frequency Section 76

4.7 Pulsed Field Gradients 77

5 Fourier Transform NMR 85

5.1 A Single-Pulse Experiment 85

5.2 Signal Averaging 86

5.3 Multiple-Pulse Experiments: Phase Cycling 89

5.4 Heteronuclear Experiments 90

5.5 Pulsed Field Gradient Sequences 91

5.6 Arrayed Experiments 91

5.7 NMR Signal 93

5.8 NMR Spectrum 96

5.9 Two-Dimensional Spectroscopy 105

5.10 Three-Dimensional Spectroscopy 114

Part 3 Quantum Mechanics 119

6 Mathematical Techniques 121

6.1 Functions 121

6.2 Operators 125

6.3 Eigenfunctions, Eigenvalues and Eigenvectors 131

6.4 Diagonalization 134

6.5 Exponential Operators 135

6.6 Cyclic Commutation 138

7 Review of Quantum Mechanics 143

7.1 Spinless Quantum Mechanics 143

7.2 Energy Levels 145

7.3 Natural Units 146

7.4 Superposition States and Stationary States 147

7.5 Conservation Laws 148

7.6 Angular Momentum 148

7.7 Spin 157

7.8 Spin-1/ 2 160

7.9 Higher Spin 162

Part 4 Nuclear Spin Interactions 169

8 Nuclear Spin Hamiltonian 171

8.1 Spin Hamiltonian Hypothesis 171

8.2 Electromagnetic Interactions 172

8.3 External and Internal Spin Interactions 177

8.4 External Magnetic Fields 177

8.5 Internal Spin Hamiltonian 182

8.6 Motional Averaging 186

9 Internal Spin Interactions 195

9.1 Chemical Shift 195

9.2 Electric Quadrupole Coupling 206

9.3 Direct Dipole–Dipole Coupling 211

9.4 J-Coupling 217

9.5 Spin–Rotation Interaction 223

9.6 Summary of the Spin Hamiltonian Terms 224

Part 5 Uncoupled Spins 229

10 Single Spin-1/2 231

10.1 Zeeman Eigenstates 231

10.2 Measurement of Angular Momentum: Quantum Indeterminacy 232

10.3 Energy Levels 233

10.4 Superposition States 234

10.5 Spin Precession 238

10.6 Rotating Frame 241

10.7 Precession in the Rotating Frame 245

10.8 Radio-frequency Pulse 247

11 Ensemble of Spins-1/2 259

11.1 Spin Density Operator 259

11.2 Populations and Coherences 261

11.3 Thermal Equilibrium 266

11.4 Rotating-Frame Density Operator 268

11.5 Magnetization Vector 269

11.6 Strong Radio-Frequency Pulse 270

11.7 Free Precession Without Relaxation 276

11.8 Operator Transformations 279

11.9 Free Evolution with Relaxation 281

11.10 Magnetization Vector Trajectories 285

11.11 NMR Signal and NMR Spectrum 287

11.12 Single-Pulse Spectra 289

12 Experiments on Non-Interacting Spins-1/2 295

12.1 Inversion Recovery: Measurement of T 1 295

12.2 Spin Echoes: Measurement of T 2 298

12.3 Spin Locking: Measurement of T 1ρ 305

12.4 Gradient Echoes 306

12.5 Slice Selection 307

12.6 NMR Imaging 309

13 Quadrupolar Nuclei 319

13.1 Spin I = 1 319

13.2 Spin I = 3/2 334

13.3 Spin I = 5/2 345

13.4 Spins I = 7/2 349

13.5 Spins I = 9/2 350

Part 6 Coupled Spins 353

14 Spin-1/2 Pairs 355

14.1 Coupling Regimes 355

14.2 Zeeman Product States and Superposition States 356

14.3 Spin-Pair Hamiltonian 357

14.4 Pairs of Magnetically Equivalent Spins 359

14.5 Weakly Coupled Spin Pairs 363

15 Homonuclear AX System 369

15.1 Eigenstates and Energy Levels 369

15.2 Density Operator 370

15.3 Rotating Frame 375

15.4 Free Evolution 376

15.5 Spectrum of the AX System: Spin–Spin Splitting 378

15.6 Product Operators 381

15.7 Thermal Equilibrium 389

15.8 Radio-Frequency Pulses 391

15.9 Free Evolution of the Product Operators 397

15.10 Spin Echo Sandwich 405

16 Experiments on AX Systems 409

16.1 Cosy 409

16.2 Inadequate 418

16.3 Inept 436

16.4 Residual Dipolar Couplings 443

17 Many-Spin Systems 453

17.1 Molecular Spin System 453

17.2 Spin Ensemble 454

17.3 Motionally Suppressed J-Couplings 454

17.4 Chemical Equivalence 455

17.5 Magnetic Equivalence 458

17.6 Weak Coupling 461

17.7 Heteronuclear Spin Systems 462

17.8 Alphabet Notation 463

17.9 Spin Coupling Topologies 464

18 Many-Spin Dynamics 467

18.1 Spin Hamiltonian 467

18.2 Energy Eigenstates 468

18.3 Superposition States 469

18.4 Spin Density Operator 470

18.5 Populations and Coherences 471

18.6 NMR Spectra 475

18.7 Many-Spin Product Operators 477

18.8 Thermal Equilibrium 481

18.9 Radio-Frequency Pulses 481

18.10 Free Precession 482

18.11 Spin Echo Sandwiches 485

18.12 INEPT in an I2 S System 488

18.13 COSY in Multiple-Spin Systems 491

18.14 Tocsy 497

Part 7 Motion and Relaxation 507

19 Motion 509

19.1 Motional Processes 509

19.2 Motional Time-Scales 513

19.3 Motional Effects 514

19.4 Motional Averaging 515

19.5 Motional Lineshapes and Two-Site Exchange 516

19.6 Sample Spinning 527

19.7 Longitudinal Magnetization Exchange 529

19.8 Diffusion 539

20 Relaxation 543

20.1 Types of Relaxation 543

20.2 Relaxation Mechanisms 543

20.3 Random Field Relaxation 545

20.4 Dipole–Dipole Relaxation 556

20.5 Steady-State Nuclear Overhauser Effect 566

20.6 Noesy 570

20.7 Roesy 577

20.8 Cross-Correlated Relaxation 584

Part 8 Appendices 597

Appendix A: Supplementary Material 599

A. 1 Euler Angles and Frame Transformations 599

A. 1 Definition of the Euler angles 599

A. 2 Rotations and Cyclic Commutation 604

A. 3 Rotation Sandwiches 605

A. 4 Spin-1/2 Rotation Operators 606

A. 5 Quadrature Detection and Spin Coherences 608

A. 6 Secular Approximation 611

A. 7 Quadrupolar Interaction 614

A. 8 Strong Coupling 615

A. 9 J-Couplings and Magnetic Equivalence 621

A. 10 Spin Echo Sandwiches 623

A. 11 Phase Cycling 629

A.12 Coherence Selection by Pulsed Field Gradients 649

A. 13 Bloch Equations 653

A. 14 Chemical Exchange 654

A. 15 Solomon Equations 660

A. 16 Cross-Relaxation Dynamics 662

Appendix B: Symbols and Abbreviations 665

Answers to the Exercises 681

Index 693

Erscheint lt. Verlag 1.4.2008
Verlagsort New York
Sprache englisch
Maße 198 x 251 mm
Gewicht 1758 g
Themenwelt Naturwissenschaften Chemie Analytische Chemie
ISBN-10 0-470-51118-4 / 0470511184
ISBN-13 978-0-470-51118-3 / 9780470511183
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Daten, Formeln, Übungsaufgaben

von Friedrich W. Küster; Alfred Thiel; Andreas Seubert

Buch | Softcover (2023)
De Gruyter (Verlag)
54,95