Hyperbolic Systems of Balance Laws

Lectures given at the C.I.M.E. Summer School held in Cetraro, Italy, July 14-21, 2003
Buch | Softcover
XII, 356 Seiten
2007 | 2007
Springer Berlin (Verlag)
978-3-540-72186-4 (ISBN)
60,94 inkl. MwSt
This volume includes four lecture courses by Bressan, Serre, Zumbrun and Williams and a Tutorial by Bressan on the Center Manifold Theorem. Bressan introduces the vanishing viscosity approach and clearly explains the building blocks of the theory. Serre focuses on existence and stability for discrete shock profiles. The lectures by Williams and Zumbrun deal with the stability of multidimensional fronts.

The present Cime volume includes four lectures by Bressan, Serre, Zumbrun and Williams and an appendix with a Tutorial on Center Manifold Theorem by Bressan. Bressan's notes start with an extensive review of the theory of hyperbolic conservation laws. Then he introduces the vanishing viscosity approach and explains clearly the building blocks of the theory in particular the crucial role of the decomposition by travelling waves. Serre focuses on existence and stability for discrete shock profiles, he reviews the existence both in the rational and in the irrational cases and gives a concise introduction to the use of spectral methods for stability analysis. Finally the lectures by Williams and Zumbrun deal with the stability of multidimensional fronts. Williams' lecture describes the stability of multidimensional viscous shocks: the small viscosity limit, linearization and conjugation, Evans functions, Lopatinski determinants etc. Zumbrun discusses planar stability for viscous shocks with a realistic physical viscosity, necessary and sufficient conditions for nonlinear stability, in analogy to the Lopatinski condition obtained by Majda for the inviscid case.

Mark Williams ist Professor für Klinische Psychologie an der Universität Oxford. Er ist Mitbegründer der erfolgreichen Therapieform Achtsamkeitsbasierte Kognitive Therapie (MBTC).

BV Solutions to Hyperbolic Systems by Vanishing Viscosity.- Discrete Shock Profiles: Existence and Stability.- Stability of Multidimensional Viscous Shocks.- Planar Stability Criteria for Viscous Shock Waves of Systems with Real Viscosity.

Erscheint lt. Verlag 6.6.2007
Reihe/Serie C.I.M.E. Foundation Subseries
Lecture Notes in Mathematics
Zusatzinfo XII, 356 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 569 g
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie Mechanik
Schlagworte 35L60, 35L65 ,35L67, 35B35, 76L05, 35L50, 65M06 • discrete shock profiles • hyperbolic conservation laws • nonlinear hypebolic systems • Partial differential equations • Profil • stability of shock waves • vanishing viscosity
ISBN-10 3-540-72186-X / 354072186X
ISBN-13 978-3-540-72186-4 / 9783540721864
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Tilo Arens; Frank Hettlich; Christian Karpfinger …

Buch | Hardcover (2022)
Springer Spektrum (Verlag)
79,99