Hamiltonian Methods in the Theory of Solitons
Springer Berlin (Verlag)
978-3-540-69843-2 (ISBN)
Ludwig D. Faddeev was born in Leningrad, USSR in 1934. He graduated from the Leningrad State University in 1956 and received his Ph.D. from there in 1959. Since 1959 he has been affiliated with the Leningrad branch of Steklov Mathematical Institute and was its Director from 1976 to 2000. Currently Faddeev is Director of the Euler International Mathematical Institute in St. Petersburg, Russia, and Academician-Secretary of the Mathematics Division of the Russian Academy of Sciences. He was President of the International Mathematical Union during1986-1990.
The Nonlinear Schrödinger Equation (NS Model).- Zero Curvature Representation.- The Riemann Problem.- The Hamiltonian Formulation.- General Theory of Integrable Evolution Equations.- Basic Examples and Their General Properties.- Fundamental Continuous Models.- Fundamental Models on the Lattice.- Lie-Algebraic Approach to the Classification and Analysis of Integrable Models.- Conclusion.- Conclusion.
Erscheint lt. Verlag | 18.5.2007 |
---|---|
Reihe/Serie | Classics in Mathematics |
Übersetzer | A.G. Reyman |
Zusatzinfo | IX, 592 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 920 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Allgemeines / Lexika |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Curvature • Integrable Evolution Equations • inverse scattering method • Lie-Algebra • Mathematische Physik • Partial differential equations • Riemann problem • Schrödinger equations • Soliton |
ISBN-10 | 3-540-69843-4 / 3540698434 |
ISBN-13 | 978-3-540-69843-2 / 9783540698432 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich