The Flow Equation Approach to Many-Particle Systems - Stefan Kehrein

The Flow Equation Approach to Many-Particle Systems

(Autor)

Buch | Hardcover
XII, 172 Seiten
2006 | 2006
Springer Berlin (Verlag)
978-3-540-34067-6 (ISBN)
181,89 inkl. MwSt
Overthepastdecade,the?owequationmethodhasdevelopedintoanewv- satile theoretical approach to quantum many-body physics. Its basic concept was conceived independently by Wegner [1] and by G lazek and Wilson [2, 3]: the derivation of a unitary ?ow that makes a many-particle Hamiltonian - creasingly energy-diagonal. This concept can be seen as a generalization of theconventionalscalingapproachesinmany-bodyphysics,wheresomeult- violet energy scale is lowered down to the experimentally relevant low-energy scale [4]. The main di?erence between the conventional scaling approach and the ?ow equation approach can then be traced back to the fact that the ?ow equation approach retains all degrees of freedom, i. e. the full Hilbert space, while the conventional scaling approach focusses on some low-energy subspace. One useful feature of the ?ow equation approach is therefore that it allows the calculation of dynamical quantities on all energy scales in one uni?ed framework. Since its introduction, a substantial body of work using the ?ow eq- tion approach has accumulated. It was used to study a number of very d- ferent quantum many-body problems from dissipative quantum systems to correlated electron physics. Recently, it also became apparent that the ?ow equation approach is very suitable for studying quantum many-body n- equilibrium problems, which form one of the current frontiers of modern theoretical physics. Therefore the time seems ready to compile the research literature on ?ow equations in a consistent and accessible way, which was my goal in writing this book.

Transformation of the Hamiltonian.- Evaluation of Observables.- Interacting Many-Body Systems.- Modern Developments.

Erscheint lt. Verlag 7.7.2006
Reihe/Serie Springer Tracts in Modern Physics
Zusatzinfo XII, 172 p.
Verlagsort Berlin
Sprache englisch
Maße 155 x 235 mm
Gewicht 980 g
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Festkörperphysik
Naturwissenschaften Physik / Astronomie Thermodynamik
Schlagworte Condensed Matter • Condensed matter theory • Flow equations • many-body theory • renormalization • Strong coupling
ISBN-10 3-540-34067-X / 354034067X
ISBN-13 978-3-540-34067-6 / 9783540340676
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich