Fission-track Thermochronology (eBook)

Methodology and Applications to Geology

Marc Jolivet (Herausgeber)

eBook Download: EPUB
2024
329 Seiten
Wiley-Iste (Verlag)
978-1-394-32580-1 (ISBN)

Lese- und Medienproben

Fission-track Thermochronology -
Systemvoraussetzungen
126,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Low-temperature thermochronology has become an essential tool when studying near-surface geological processes. Time-temperature constraints are vital to quantify and describe a large variety of geological processes, such as relief building, erosion and sedimentation or the maturation of organic matter in sedimentary basins.

After a brief history covering the discovery of fission tracks to their first applications in geochronology, Fission-track Thermochronology presents a complete description of not only the fission-track, but also the (U Th Sm)/He thermochronology approaches, both on basement rocks and on sediments. Firstly, the physical and chemical processes that underlie these techniques are addressed, and the analytical methods are described in detail. A particular focus is placed on the latest developments, such as the use of laser-ablation ICP-MS, and a whole chapter is dedicated to statistical modeling of the data.

Finally, numerous examples of applications to geological questions will provide the reader with a comprehensive overview of the possibilities of low temperature thermochronology in solving geological and geomorphological questions.



Marc Jolivet is a researcher at Centre National de la Recherche Scientifique, France, and is a geomorphologist interested in the long-term evolution of continental landscapes. He uses fissiontrack thermochronology to quantify vertical movements and erosion rates with a special interest in flat intracontinental surfaces.

1
Introduction to Detrital Apatite and Zircon Fission-track Thermochronology


Matthias BERNET

Institut des Sciences de la Terre, University Grenoble Alpes, France

Italienische Reise

Noch wunderlicher erschien ich diesem Begleiter, als ich auf allen seichten Stellen, deren der Fluß gar viele trocken läßt, nach Steinchen suchte und die verschiedenen Arten derselben mit mir forttrug. Ich konnte ihm abermals nicht erklären, daß man sich von einer gebirgigen Gegend nicht schneller einen Begriff machen kann, als wenn man die Gesteinsarten untersucht, die in den Bächen herabgeschoben werden, und daß hier auch die Aufgabe sei, durch Trümmer sich eine Vorstellung von jenen ewig klassischen Höhen des Erdaltertums zu verschaffen. Auch war meine Ausbeute aus diesem Flusse reich genug, ich brachte beinahe vierzig Stücke zusammen, welche sich freilich in wenige Rubriken unterordnen ließen.

Johann Wolfgang von Goethe, Palermo, 4 April 1787

1.1. Introduction


The use of detrital apatite and zircon fission-track and (U-Th)/He dating or white mica 40Ar-39Ar dating of modern river and beach sediments or ancient sandstone is a common approach in sediment provenance, source rock exhumation and basin analysis studies. In this chapter, the focus is on detrital apatite and zircon fission-track dating. Both techniques are considered as low-temperature thermochronology dating techniques, with temperature sensitivities in the range of ~ 250–180°C for zircon and ~ 130–80°C for apatite in comparison to high-temperature dating techniques such as zircon or monazite U-Pb dating (Figure 1.1).

Figure 1.1. Overview of the temperature sensitivity range of selected isotopic dating techniques.

Apatite (density of 3.1–3.3 g/cm3) and zircon (density of 4.5–4.6 g/cm3) are heavy minerals in contrast to the density of quartz (2.65 g/cm3). Despite the highly variable apatite and zircon fertility of many upper crustal plutonic, volcanic and metamorphic rocks, both apatite and zircon are relatively common accessory minerals in many sand-sized clastic sediments and sedimentary rocks (Malusà and Garzanti 2019). Although apatite is susceptible to dissolution in acid depositional environments (e.g. bogs) or soils, and abrasion during fluvial transport, zircon is considered as ultra-stable, as long as the grains have not accumulated too much α-radiation damage and are metamict (Malusà and Garzanti 2019; Malusà and Fitzgerald 2020). Both minerals are chemically stable under diagenetic conditions during burial in sedimentary basins or during basin inversion and exhumation.

Since the first detrital zircon fission-track analysis studies in the 1980s (e.g. Hurford et al. 1984; Cerveny et al. 1988), detrital apatite and zircon fission-track dating have developed into standard techniques that have been applied successfully to many different geodynamic settings, for example, the European Alps, the Himalaya, the Tibetan plateau, the Andes, the Southern Alps of New Zealand, or in Alaska, for quantifying exhumation or erosion rates, determining the timing of tectonic events, or the thermal history of sedimentary basins (see examples and references below). Today, it is possible to combine fission-track dating with U-Pb dating and even with (U-Th)/He dating for double and triple dating of single grains, as well as chemical analyses such as Sr isotopes in apatites and Lu and Hf isotopes in zircon. The combination of different techniques on single grains may provide additional valuable information for constraining more precisely sediment provenance and source rock or basin thermal histories.

This chapter provides an introduction to (A) the basics of detrital fission-track analysis using the external detector method (EDM), (B) the underlying statistics for age calculations, data interpretation and the evaluation of detrital grain age distributions, and (C) applications of detrital thermochronology with some examples.

1.2. Principals of fission-track dating


1.2.1. Basics of single grain apatite and zircon fission-track analysis


Fission-track dating has been developed in the 1960s by Robert L. Fleischer, P. Burford Price and Robert M. Walker, three physicists of General Electrics in Schenectady, New York, USA, who worked on nuclear defects in solids. The formation of a fission track by spontaneous fission of 238U isotopes is in fact a very rare event as radioactive 238U isotopes normally decay by a series of α and β-decay steps to stable 206Pb (Figure 1.2(A)). The regular 238U to 206Pb decay is about 2 million times more common than the spontaneous fission decay of 238U into two isotopes of different mass that recoil from each other and leave a damage zone in the crystal structure, which is called a latent track (Table 1.1; Figure 1.2(B)) (Fleischer et al. 1975; Wagner and Van den haute 1992). Early on Fleischer, Price and Walker realized that the formation of latent damage zones by spontaneous fission of 238U isotopes in crystals of U-bearing minerals such as apatite, zircon or titanite could be of geological interest (e.g. Price and Walker 1962; Fleischer and Price 1964; Fleischer et al. 1975). The isotopes formed during the spontaneous fission events are not always the same. In fact, two of over 690 different possible isotopes, one heavier isotope with a mass number of up to 172 and a lighter isotope with a mass number as low as 66, are formed. Most of these newly formed isotopes are also radioactive and will decay over seconds, hours, days, months or years, but without causing additional fission damage. The formation of spontaneous fission-track damage in a U-bearing crystal follows a decay constant, just like regular α-decay, and the fission tracks that are formed because of the spontaneous fission decay of 238U are regarded as the daughter products of this decay event (Table 1.1). Given the isotopic abundance and the spontaneous fission-decay constant of 238U isotopes with respect to 235U, 234U and 232Th, only 238U is considered as important for fission-track dating, and the contributions of spontaneous fission tracks from 235U, 234U and 232Th spontaneous fission are negligible. In dependence of U content, fission tracks accumulate in crystals over time and will be at least partially preserved, if the ambient temperatures are below the so-called closure temperature (Tc).

Figure 1.2. (A) 238U-206Pb decay chain, with a series of eight α-decay steps and six β-decay steps and their half-lives. (B) Spontaneous fission of 238U and formation of latent fission tracks.

Table 1.1. Decay constants and half-lives of U and Th isotopes. Note: α for α-decay, s.f. for spontaneous fission decay (from Wagner and Van den haute (1992); Donelick et al. (2005))

Isotope Abundance (%) Decay Constant (year-1) Half-life (year) Thermal neutron capture cross-section (10-24 cm2)
238U 99.2743 (α) 1.55 × 10−10
(s.f.) ~7.5 × 10−17
(α) 4.47 × 109
(s.f.) ~1.3 × 1016
2.7
235U 0.7200 9.85 × 10−10 7.04 × 108 580
234U 0.0057 2.81 × 10−6 2.46 × 105 100
232Th 100.0000 4.92 × 10−11 1.41 × 1010 7.4

1.2.2. Closure temperature concept


The Tc is the temperature at which an isotopic system closes to the loss of daughter products (Dodson 1973). In case of fission-track dating, it means that fission tracks are preserved and not lost to total annealing, which occurs at elevated temperatures above the closure temperature. The Tc of the apatite and zircon fission-track dating systems, and also other thermochronological systems such as (U-Th)/He or 40Ar/39Ar dating, depends primarily on cooling rate (Figure 1.3(A)). Equation [1.1] shows that the Tc is controlled by diffusion and can be calculated as follows:

[1.1]

where Ea is the activation energy, R is the gas constant, A is the cylinder shape of the crystal, τ is the characteristic time taken for the diffusivity to decrease by a factor e and Do/a2 is the diffusion. Because the calculation of τ also requires a Tc value (see equation [1.2]), it is necessary to find an iterative solution for Tc. Table 1.2 shows commonly used values of activation energy and diffusion parameters for apatite and zircon fission-track dating determined by laboratory diffusion experiments (see summary in Wagner and Van den haute (1992); Reiners and Brandon (2006)).

[1.2]

Equation [1.2] also shows why the cooling rate, the change of temperature (δT) over time (δt), has an important influence on the Tc. The parameter...

Erscheint lt. Verlag 7.10.2024
Reihe/Serie ISTE Consignment
Sprache englisch
Themenwelt Naturwissenschaften Geowissenschaften Geologie
Schlagworte Fission • fission-track thermochronology • Geochronology • geological processes • laser-ablation ICP-MS • low temperature thermochronology • Thermochronology
ISBN-10 1-394-32580-0 / 1394325800
ISBN-13 978-1-394-32580-1 / 9781394325801
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 12,6 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich