Fractal Geometry, Complex Dimensions and Zeta Functions

Geometry and Spectra of Fractal Strings
Buch | Hardcover
484 Seiten
2006
Springer-Verlag New York Inc.
978-0-387-33285-7 (ISBN)

Lese- und Medienproben

Fractal Geometry, Complex Dimensions and Zeta Functions - Michel L. Lapidus, Machiel Frankenhuijsen
71,64 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Number theory, spectral geometry, and fractal geometry are interlinked in this in-depth study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. Numerous theorems, examples, remarks and illustrations enrich the text.
Number theory, spectral geometry, and fractal geometry are interlinked in this study of the vibrations of fractal strings, that is, one-dimensional drums with fractal boundary. The Riemann hypothesis is given a natural geometric reformulation in context of vibrating fractal strings, and the book offers explicit formulas extended to apply to the geometric, spectral and dynamic zeta functions associated with a fractal.

List of Figures.- Preface.- Overview.- Introduction.- Complex Dimensions of Ordinary Fractal Strings.- Complex Dimensions of Self-Similar Fractal Strings.- Complex Dimensions of Nonlattice Self-Similar Strings: Quasiperiodic Patterns and Diophantine Approximation.- Generalized Fractal Strings Viewed as Measures.- Explicit Formulas for Generalized Fractal Strings.- The Geometry and the Spectrum of Fractal Strings.- Periodic Orbits of Self-Similar Flows.- Tubular Neighborhoods and Minkowski Measurability.- The Riemann Hypothesis and Inverse Spectral Problems.- Generalized Cantor Strings and their Oscillations.- The Critical Zeros of Zeta Functions.- Concluding Comments, Open Problems, and Perspectives.- Appendices.- A. Zeta Functions in Number Theory.- B. Zeta Functions of Laplacians and Spectral Asymptotics.- C. An Application of Nevanlinna Theory.- Bibliography.- Acknolwedgements.- Conventions.- Index of Symbols.- Author Index.- Subject Index.

Erscheint lt. Verlag 12.9.2006
Reihe/Serie Springer Monographs in Mathematics
Zusatzinfo 1, black & white illustrations
Verlagsort New York, NY
Sprache englisch
Maße 156 x 234 mm
Gewicht 857 g
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie
ISBN-10 0-387-33285-5 / 0387332855
ISBN-13 978-0-387-33285-7 / 9780387332857
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
28,00
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
39,99