Superconductivity - J. B. Ketterson, S. N. Song

Superconductivity

Buch | Softcover
512 Seiten
1999
Cambridge University Press (Verlag)
978-0-521-56562-2 (ISBN)
89,95 inkl. MwSt
Studibuch Logo

...gebraucht verfügbar!

This graduate textbook is in three parts: the first deals with phenomenological aspects of superconductivity; the second with the microscopic theory of uniform superconductors; and the third with the microscopic theory of non-uniform superconductors.
This is a three-part text on the subject of superconductivity, an area of intense research activity worldwide. The first part covers the London, Pippard and Ginzburg-Landau theories, which are used to discuss a wide range of phenomena involving surface energies, vorticity, the intermediate and mixed states, boundaries and boundary conditions, the upper critical field in bulk, thin film and anisotropic superconductors, and surface superconductivity. The second section discusses the microscopic theory of Bardeen, Cooper and Schreiffer. The theory is used to discuss quasi particle tunneling and the Josephson effects from a microscopic point of view. The final part of the book treats non-uniform superconductors using the Bogoliubov-de Gennes approach with which it is possible to extract many important results without invoking Green's function methods. This text will be of great interest to graduate students and research workers in the fields of superconductivity, superfluidity, many body theory, and quantum liquids.

Part I. Phenomenological Theories of Suoerconductivity: 1. Introduction; 2. The London-London equation; 3. Pippard's equation; 4. Thermodynamics of type I superconductor; 5. The intermediate state; 6. Surface energy between a normal and a superconducting metal; 7. Quantized vorticity; 8. Type II superconductivity; 9. The Ginzburg–Landau theory; 10. The upper critical field of a type II superconductor; 11. The anisotropic superconductor; 12. Superconductivity in thin slabs; 13. Surface superconductivity; 14. The type II superconductor for H just below Hc2; 15. The Josephson effect; 16. The Josephson lattice in 1D; 17. Vortex structures in layered superconductors; 18. Granular superconductors; the Josephson lattice in 2D and 3D; 19. Wave propagation in Josephson junctions, superlattices and arrays; 20. Flux pinning and flux motion; 21. Time dependent Ginzburg–Landau theory; 22. Fluctuation effects; 23. Ginzburg–Landau theory of an unconventional superfluid; 24. Landau Fermi liquid theory; Part II. The Microscopic Theory of a Uniform Superconductor: 25. The Cooper problem: pairing of two electrons above a filled Fermi sea; 26. The Bardeen–Cooper–Schrieffer theory of the superconducting ground state; 27. Elementary excitations; the Bogoliubov–Valatin transformation; 28. Calculation of the thermodynamic properties using the Bogoliubov–Valatin method; 29. Quasiparticle tunneling; 30. Pair tunneling: the microscopic theory of the Josephson effects; 31. Simplified discussion of pairing mechanisms; 32. The effect of Coulomb repulsion on Tc; 33. The two band superconductor; 34. Time dependent perturbations; 35. Non equilibrium superconductivity; Part III. Non Uniform Superconductors: 36. Bogoliubov's self-consistent potential equations; 37. Self consistency conditions and the free energy; 38. Linearized self consistency and the correlation function; 39. Behaviour of the correlation function in the clean and dirty limits; 40. Self consistency condition; 41. Effects involving electron spin; 42. Boundary conditions; 43. The proximity effect at zero field; 44. Proximity effect in a magnetic field; 45. Derivation of the Ginzburg–Landau theory; 46. Gauge invariance; Diamagnetism in the low field limit; 47. The quasi-classical case; 48. The isolated vortex line; 49. Time dependent Bogoliubov equations; 50. The response of a superconductor to an electromagnetic field; 51. The Bogoliubov equations for an unconventional superfluid; 53. Superfluid 3He; 54. Collective modes in normal and superfluid Fermi systems; 55. Green's functions; Appendix A. The occupation number representation; Appendix B. Some calculations involving the BCS wavefunction; Appendix C. The gap as a perturbation through third order; References; Additional reading; List of mathematical and physical symbols; Index.

Erscheint lt. Verlag 12.1.1999
Zusatzinfo 5 Tables, unspecified; 80 Line drawings, unspecified
Verlagsort Cambridge
Sprache englisch
Maße 188 x 245 mm
Gewicht 898 g
Themenwelt Naturwissenschaften Physik / Astronomie Elektrodynamik
Naturwissenschaften Physik / Astronomie Festkörperphysik
ISBN-10 0-521-56562-6 / 0521565626
ISBN-13 978-0-521-56562-2 / 9780521565622
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich