Process Design for Cryogenics (eBook)
528 Seiten
Wiley-VCH (Verlag)
978-3-527-81562-3 (ISBN)
Up-to-date overview of the method for producing the main industrial gases
This book covers process design for cryogenic processes like air separation, natural gas liquefaction, and hydrogen and helium liquefaction. It offers an overview of the basics of cryogenics and information on process design for modern industrial plants. Throughout, the book helps readers visualize the theories of thermodynamics related to cryogenics in practice. A central concept in the book is the connection between the theoretical world of process design and the real limitations given by available hardware components and systems.
Sample topics covered in Process Design for Cryogenics include:
- Cryogenic gases like nitrogen, oxygen, argon, neon, hydrogen, helium, and methane
- Thermodynamics
- Typical cryogenic refrigeration processes, including the classic Joule Thomson process, the contemporary mixed-gas Joule Thomson process, and expander-based processes like Brayton and Claude cycles
- Helium and hydrogen liquefaction and air separation
Process Design for Cryogenics is a comprehensive must-have resource for engineers and scientists working in academia and industry on cryogenic processes.
Alexander Alekseev is a senior innovation manager at the Linde Group (Germany). He studied at Moscow Power Engineering Institute (Russia) and completed his PhD at the Technical University of Dresden (Germany). He then worked at Stanford University (USA) as a guest scientist and at Messer Cryotherm (Germany), before joining the Linde Group in 2005. Since 2012 he is also a honorary Professor at the Technical University of Munich (Germany).
Symbols, Signs, and Abbreviations
Latin Symbols
Symbol | Description | Example of units |
---|
COP | coefficient of performance |
Cp | heat capacity at constant pressure | J/K |
cp | mass [or molar] specific heat capacity at constant pressure | J/(kg K) J/(mol K) |
Cv | heat capacity at constant volume | J/K J/K |
cv | mass [or molar] specific heat capacity at constant volume | J/(kg K) J/(mol K) |
D | exergy loss | J, kWh |
Ḋ | exergy loss flow | W, kW |
E | exergy | J |
Ė | exergy flow | W |
e | mass [or molar] specific exergy | J/kg J/mol |
H | enthalpy | J, kWh |
Ḣ | enthalpy flow | W, kW |
h | mass [or molar] specific enthalpy | J/kg J/mol |
hb | mass [or molar] specific enthalpy at the boiling point | J/kg J/mol |
hd | mass [or molar] specific enthalpy at the dew point | J/kg J/mol |
m | mass | kg |
ṁ | mass flow or mass flowrate | kg/s |
M or Mr | molecular weight | g/mol |
MTD | mean temperature difference in heat exchanger | K |
LTD | logarithmic temperature difference in heat exchanger | K |
LF | liquid fraction = molar [or mass] fraction of liquid in a two-phase fluid/material stream |
N | molar amount of substance | mol |
Ṅ | molar flow or molar flowrate | mol/s Nm3/h |
p | pressure | bar |
ps | boiling pressure or saturation pressure or vapor pressure | bar |
P | power as mechanical or electric power | W, kW |
PEXP | mechanical power generated by an expander | W, kW |
PCOMP | mechanical power required for driving a compressor | W, kW |
Q | heat | J, kWh |
heat flow | W, kW |
o | cooling capacity (or cooling power) of a refrigerator | W, kW |
amb | waste heat rejected into environment/ambient (to cooling air or cooling water) | W, kW |
heat flow, transferred from warm side/fluid to cold side/fluid in a heat exchanger = heat exchanger duty | W, kW |
is | heat flow through non-ideal thermal insulation | W, kW |
q | mass [or molar] specific heat | J/kg |
mass [or molar] specific heat flow | W/kg |
Rm | universal gas constant R = 8.314 J/(mol K) | J/(mol K) |
S | entropy | J/K |
entropy flow | W/K |
s | mass [or molar] specific entropy | J/(kg K) J/(mol K) |
sb | mass [or molar] specific entropy at the boiling point | J/(kg K) J/(mol K) |
sd | mass [or molar] specific entropy at the dew point | J/(kg K) J/(mol K) |
T | temperature | K |
Ts | boiling temperature or saturation temperature | K |
To | cooling temperature – temperature of the object being cooled | K |
Tamb | ambient temperature = environment temperature or room temperature | K |
Tc | critical temperature | K |
u | fluid velocity | m/s |
VF | vapor fraction = molar [or mass] fraction of liquid in a two-phase fluid/material stream | mol/mol or kg/kg |
W | mechanical work | J, kWh |
xi | molar [or mass] fraction of a component in liquid mixture | mol/mol kg/kg |
yi | molar [or mass] fraction of a component in gaseous/vapor mixture | mol/mol kg/kg |
zi | molar [or mass] fraction of a component in a mixture | mol/mol kg/kg |
Greek Symbols
γ | gamma = heat capacity ratio cp/cv = isentropic exponent for an ideal gas | – |
ε | synonymous to coefficient of performance COP | – |
κ = κ | kappa = isentropic exponent for a real gas | – |
μ | Joule–Thomson coefficient | K/bar |
μ | in chapter 4.4.1 it is used for chemical potential | J/mol |
η | efficiency |
ηe | exergy efficiency = Carnot efficiency |
ηs | isentropic efficiency of a compressor stage or expander stage |
ηT | isothermic efficiency of a multistage compressor |
ɳLIQ | efficiency of a liquefier |
π | pressure ratio in an expander or a compressor |
ρ | density of fluid | kg/m3 |
ϑ | temperature in °C | °C |
λ | thermal heat conductivity | W/(m K) |
Σ | sum |
Mixed Symbols
Δhv | molar [or mass] enthalpy of vaporization | J/kg J/mol |
ΔḢWE | enthalpy [flow] difference at the warm end of a heat exchanger | kW |
ΔS | entropy rise | J/K |
Δs | specific entropy rise | J/(mol K) |
ΔT | temperature difference | K |
ΔTmin | minimal temperature difference in a heat exchanger | K |
ΔTmax | maximal temperature difference in a heat exchanger | K |
ΔTCE | temperature difference at the cold end of a heat exchanger | K |
ΔTWE | temperature difference at the warm end of a heat exchanger | K |
Tλ | temperature at λ – point (for liquid helium) | K |
Subscripts
amb | used for ambient/environment conditions |
c | used for cold objects (cold material streams, cold expanders and similar) |
c | sometimes relates to critical states, for example, critical temperature Tc or critical pressure pc |
Carnot | relates to Carnot process or generally to a reversible process |
COMP | relates to compressor |
EXP | relates to expander |
Erscheint lt. Verlag | 28.8.2024 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
ISBN-10 | 3-527-81562-7 / 3527815627 |
ISBN-13 | 978-3-527-81562-3 / 9783527815623 |
Haben Sie eine Frage zum Produkt? |
Größe: 70,5 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belletristik und Sachbüchern. Der Fließtext wird dynamisch an die Display- und Schriftgröße angepasst. Auch für mobile Lesegeräte ist EPUB daher gut geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich