Discrete Inverse and State Estimation Problems
With Geophysical Fluid Applications
Seiten
2006
Cambridge University Press (Verlag)
978-0-521-85424-5 (ISBN)
Cambridge University Press (Verlag)
978-0-521-85424-5 (ISBN)
Addressing the problems of making inferences from noisy observations and imperfect theories, this 2006 book introduces many inference tools and practical applications. Starting with fundamental algebraic and statistical ideas, it is ideal for graduate students and researchers in oceanography, climate science, and geophysical fluid dynamics.
The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This 2006 book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra.
The problems of making inferences about the natural world from noisy observations and imperfect theories occur in almost all scientific disciplines. This 2006 book addresses these problems using examples taken from geophysical fluid dynamics. It focuses on discrete formulations, both static and time-varying, known variously as inverse, state estimation or data assimilation problems. Starting with fundamental algebraic and statistical ideas, the book guides the reader through a range of inference tools including the singular value decomposition, Gauss-Markov and minimum variance estimates, Kalman filters and related smoothers, and adjoint (Lagrange multiplier) methods. The final chapters discuss a variety of practical applications to geophysical flow problems. Discrete Inverse and State Estimation Problems is an ideal introduction to the topic for graduate students and researchers in oceanography, meteorology, climate dynamics, and geophysical fluid dynamics. It is also accessible to a wider scientific audience; the only prerequisite is an understanding of linear algebra.
Carl Wunsch is Cecil and Ida Green Professor of Physical Oceanography at the Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology.
Preface; Part I. Fundamental Machinery: 1. Introduction; 2. Basic machinery; 3. Extensions of methods; 4. The time-dependent inverse problem: state estimation; 5. Time-dependent methods (continued); Part II. Applications: 6. Applications to steady problems; 7. Applications to time-dependent fluid problems; References; Index.
Erscheint lt. Verlag | 29.6.2006 |
---|---|
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 180 x 254 mm |
Gewicht | 943 g |
Themenwelt | Naturwissenschaften ► Geowissenschaften ► Hydrologie / Ozeanografie |
ISBN-10 | 0-521-85424-5 / 0521854245 |
ISBN-13 | 978-0-521-85424-5 / 9780521854245 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
die große Bild-Enzyklopädie mit mehr als 2000 Fotografien und …
Buch | Hardcover (2023)
Dorling Kindersley (Verlag)
59,95 €
Kuriositäten und Überraschendes im, am und auf dem Meer
Buch | Hardcover (2023)
Kosmos (Verlag)
38,00 €
what the ocean's animals can teach us about ourselfs
Buch | Softcover (2024)
Vintage (Verlag)
13,70 €