College Physics, (Chs.1-30) with MasteringPhysics - Hugh D. Young, Robert Geller

College Physics, (Chs.1-30) with MasteringPhysics

United States Edition
Media-Kombination
1180 Seiten
2006 | 8th edition
Benjamin-Cummings Publishing Company, Subs of Addison Wesley Longman, Inc
978-0-8053-9070-4 (ISBN)
117,60 inkl. MwSt
zur Neuauflage
  • Titel erscheint in neuer Auflage
  • Artikel merken
Zu diesem Artikel existiert eine Nachauflage
Providing an introduction to physics, this book integrates many solutions form educational research to help students to develop greater confidence in solving problems, deeper conceptual understanding, and stronger quantitative-reasoning skills, while helping them connect what they learn with their other courses and the changing world around them.
For more than five decades, Sears and Zemansky's College Physics has provided the most reliable foundation of physics education for students around the world. For the Eighth Edition, Robert Geller joins Hugh Young to produce a comprehensive update of this benchmark text.

A broad and thorough introduction to physics, this new edition carefully integrates many solutions form educational research to help students to develop greater confidence in solving problems, deeper conceptual understanding, and stronger quantitative-reasoning skills, while helping them connect what they learn with their other courses and the changing world around them. 

 

Hugh D. Young is Professor of Physics at Carnegie Mellon University in Pittsburgh, PA. He attended Carnegie Mellon for both undergraduate and graduate study and earned his Ph.D. in fundamental particle theory under the direction of the late Richard Cutkosky. He joined the faculty of Carnegie Mellon in 1956, and has also spent two years as a visiting Professor at the University of California at Berkeley. Hugh's career has centered entirely around undergraduate education. He has written several undergraduate-level textbooks, and in 1973 he became a coauthor with Francis Sears and Mark Zemansky for their well-known introductory texts. In addition to his role on Sears and Zemansky's College Physics, he is currently a coauthor with Roger Freedman on Sears and Zemanksy's University Physics. Hugh is an enthusiastic skier, climber, and hiker. He also served for several years as Associate Organist at St. Paul's Cathedral in Pittsburgh, and has played numerous organ recitals in the Pittsburgh area. Prof. Young and his wife Alice usually travel extensively in the summer, especially in Europe and in the desert canyon country of southern Utah. Robert M. Geller teaches physics at the University of California, Santa Barbara, where he also obtained his Ph.D. under Robert Antonucci in observational cosmology. Currently, he is involved in two major research projects: a search for cosmological halos predicted by the Big Bang, and a search for the flares that are predicted to occur when a supermassive black hole consumes a star. Rob also has a strong focus on undergraduate education. In 2003, he received the Distinguished Teaching Award. He trains the graduate student teaching assistants on methods of physics education. He is also a frequent faculty leader for the UCSB Physics Circus, in which student volunteers perform exciting and thought-provoking physics demonstrations to elementary schools. Rob loves the outdoors. He and his wife Susanne enjoy backpacking along rivers and fly fishing, usually with rods she has build and flies she has tied. Their daughter Zoe loves fishing too, but her fish tend to be plastic, and float in the bathtub.

Chapter 1  Models, Measurements, and Vectors

1.1       Introduction

1.2       Idealized Models

1.3       Standards and Units

1.4       Unit Consistency and Conversions

1.5       Precision and Significant Figures

1.6       Estimates and Orders of Magnitude

1.7       Vectors and Vector Addition

1.8       Components of Vectors

 

Chapter 2  Motion along a Straight Line

2.1       Displacement and Average Velocity

2.2       Instantaneous Velocity

2.3       Average and Instantaneous Acceleration

2.4       Motion with Constant Acceleration

2.5       Proportional Reasoning

2.6       Freely Falling Objects

*2.7     Relative Velocity along a Straight Line

 

Chapter 3  Motion in a Plane

3.1       Velocity in a Plane

3.2       Acceleration in a Plane

3.3       Projectile Motion

3.4       Uniform Circular Motion

*3.5     Relative Velocity in a Plane

 

Chapter 4  Newton’s Laws of Motion

4.1       Force

4.2       Newton’s First Law

4.3       Mass and Newton’s Second Law

4.4       Mass and Weight

4.5       Newton’s Third Law

4.6       Free-Body Diagrams

 

Chapter 5  Applications of Newton’s Laws

5.1       Equilibrium of a Particle

5.2       Applications of Newton’s Second Law

5.3       Contact Forces and Friction

5.4       Elastic Forces

5.5       Forces in Nature

 

Chapter 6  Circular Motion and Gravitation

6.1       Force in Circular Motion

6.2       Motion in a Vertical Circle

6.3       Newton’s Law of Gravitation

6.4       Weight

6.5       Satellite Motion

 

Chapter 7 Work and Energy

7.1       An Overview of Energy

7.2       Work

7.3       Work and Kinetic Energy

7.4       Work Done by a Varying Force

7.5       Potential Energy

7.6       Conservation of Energy

7.7       Conservative and Nonconservative Forces

7.8       Power

 

Chapter 8  Momentum

8.1       Momentum

8.2       Conservation of Momentum

8.3       Inelastic Collisions

8.4       Elastic Collisions

8.5       Impulse

8.6       Center of Mass

8.7       Motion of the Center of Mass

*8.8     Rocket Propulsion

 

Chapter 9  Rotational Motion

9.1       Angular Velocity and Angular Acceleration

9.2       Rotation with Constant Angular Acceleration

9.3       Relationship between Linear and Angular Quantities

9.4       Kinetic Energy of Rotation and Moment of Inertia

9.5       Rotation about a Moving Axis

 

Chapter 10  Dynamics of Rotational Motion

10.1     Torque

10.2     Torque and Angular Acceleration

10.3     Work and Power in Rotational Motion

10.4     Angular Momentum

10.5     Conservation of Angular Momentum

10.6     Equilibrium of a Rigid Body

*10.7   Vector Nature of Angular Quantities

 

Chapter 11  Elasticity and Periodic Motion

11.1     Stress, Strain, and Elastic Deformations

11.2     Periodic Motion  

11.3     Energy in Simple Harmonic Motion  

11.4     Equations of Simple Harmonic Motion  

11.5     The Simple Pendulum  

11.6     Damped and Forced Oscillations  

 

Chapter 12  Mechanical Waves and Sound 

12.1    Mechanical Waves  

12.2    Periodic Mechanical Waves  

12.3    Wave Speeds  

*12.4   Mathematical Description of a Wave  

12.5    Reflections and Superposition  

12.6    Standing Waves and Normal Modes  

12.7    Longitudinal Standing Waves  

12.8    Interference  

12.9    Sound and Hearing  

12.10  Sound Intensity

12.11  Beats                                                                                                                                                                                                                  12.12  The Doppler Effect 

12.13  Applications of Acoustics  

*12.14  Musical Tones  

 

Chapter 13  Fluid Mechanics

13.1     Density

13.2     Pressure in a Fluid

13.3     Archimedes’ Principle: Buoyancy

*13.4   Surface Tension and Capillarity  

13.5     Fluid Flow

13.6     Bernoulli’s Equation

13.7     Applications of Bernoulli’s equation

13.8     Real Fluids: Viscosity and Turbulence

 

Chapter 14  Temperature and Heat

14.1     Temperature and Thermal Equilibrium

14.2     Temperature Scales

14.3     Thermal Expansion

14.4     Quantity of Heat

14.5     Phase Changes

14.6     Calorimetry

14.7     Heat Transfer

*14.8   Solar Energy and Resource Conservation

 

Chapter 15  Thermal Properties of Matter

15.1    The Mole and Avogadro’s Number

15.2    Equations of State  

15.3    Kinetic Theory of an Ideal Gas   

15.4    Heat Capacities

15.5    The First Law of Thermodynamics

15.6    Thermodynamic Processes

15.7    Properties of an Ideal Gas  

 

Chapter 16  The Second Law of Thermodynamics

16.1       Directions of Thermodynamic Processes  

16.2       Heat Engines  

16.3       Internal Combustion Engines  

16.4       Refrigerators  

16.5       The Second Law of Thermodynamics  

16.6       The Carnot Engine: The Most Efficient Heat Engine  

16.7       Entropy  

*16.8     The Kelvin Temperature Scale  

*16.9     Energy Resources: A Case Study in Thermodynamics  

 

Chapter 17  Electric Charge and Electric Field

17.1     Electric charge

17.2     Conductors and Insulators  

17.3     Conservation and Quantization of Charge 

17.4     Coulomb’s Law

17.5     Electric Field and Electric Forces

17.6     Calculating Electric Fields

17.7     Electric Field Lines 

*17.8    Gauss’s Law and Field Calculations  

*17.9    Charges on Conductors  

 

Chapter 18  Electric Potential and Capacitance

18.1     Electric Potential Energy

18.2     Potential  

18.3     Equipotential Surfaces

18.4     The Millikan Oil-Drop Experiment

18.5     Capacitors

18.6    Capacitors in Series and in Parallel 

18.7    Electric Field Energy 

18.8    Dielectrics  

*18.9   Molecular Model of Induced Charge  



 

Chapter 19  Current, Resistance, and Direct-Current Circuits

19.1     Current

19.2     Resistance and Ohm's Law

19.3     Electromotive Force and Circuits

19.4     Energy and Power in Electric Circuits

19.5     Resistors in Series and Parallel

19.6     Kirchhoff's Rules

19.7     Electrical Measuring Instruments

19.8     Resistance-Capacitance Circuits

*19.9   Physiological Effects of Currents 

*19.10   Power Distribution Systems 

 

Chapter 20  Magnetic Field and Magnetic Forces  

20.1     Magnetism  

20.2     Magnetic Field and Magnetic Force  

20.3     Motion of Charged Particles in a Magnetic Field  

20.4     Mass Spectrometers  

20.5     Magnetic Force on a Current-Carrying Conductor  

20.6     Force and Torque on a Current Loop  

20.7     Magnetic Field of a Long, Straight Conductor  

20.8     Force between Parallel Conductors  

20.9     Current Loops and Solenoids 

*20.10 Magnetic Field Calculations 

*20.11 Magnetic Materials 

 

Chapter 21 Electromagnetic Induction  

21.1     Induction Experiments  

21.2     Magnetic Flux  

21.3     Faraday’s Law  

21.4     Lenz’s Law  

21.5     Motional Electromotive Force  

21.6     Eddy Currents  

21.7     Mutual Inductance  

21.8     Self-Inductance  

21.9     Transformers  

21.10   Magnetic Field Energy  

21.11   The R–L Circuit  

21.12   The L–C Circuit  

 

Chapter 22 Alternating Current  

22.1     Phasors and Alternating Currents  

22.2     Resistance and Reactance  

22.3     The Series R–L–C Circuit  

22.4     Power in Alternating-Current Circuits  

22.5     Series Resonance  

*22.6   Parallel Resonance  

 

Chapter 23 Electromagnetic Waves  

23.1     Introduction to Electromagnetic Waves  

23.2     Speed of an Electromagnetic Wave  

23.3     The Electromagnetic Spectrum  

23.4     Sinusoidal Waves  

23.5     Energy in Electromagnetic Waves  

23.6     Nature of Light  

23.7     Reflection and Refraction  

23.8     Total Internal Reflection  

*23.9   Dispersion  

23.10   Polarization  

*23.11 Huygen’s Principle  

*23.12 Scattering of Light  

 

Chapter 24  Geometric Optics  

24.1     Reflection at a Plane Surface  

24.2     Reflection at a Spherical Surface  

24.3     Graphical Methods for Mirrors  

24.4     Refraction at a Spherical Surface  

24.5     Thin Lenses  

24.6     Graphical Methods for Lenses  

 

Chapter 25 Optical Instruments  

25.1     The Camera  

25.2     The Projector  

25.3     The Eye  

25.4     The Magnifier  

25.5     The Microscope  

25.6     Telescopes  

*25.7   Lens Aberrations  

 

Chapter 26 Interference and Diffraction  

26.1     Interference and Coherent Sources  

26.2     Two-Source Interference of Light  

26.3     Interference in Thin Films  

26.4     Diffraction  

26.5     Diffraction from a Single Slit  

26.6     Multiple Slits and Diffraction Gratings  

26.7     X-Ray Diffraction  

26.8     Circular Apertures and Resolving Power  

26.9     Holography  

 

Chapter 27 Relativity  

27.1     Invariance of Physical Laws  

27.2     Relative Nature of Simultaneity  

27.3     Relativity of Time  

27.4     Relativity of Length  

27.5     The Lorentz Transformation  

27.6     Relativistic Momentum  

27.7     Relativistic Work and Energy  

27.8     Relativity and Newtonian Mechanics  

 

Chapter 28 Photons, Electrons, and Atoms  

28.1     The Photoelectric Effect  

28.2     Line Spectra and Energy Levels  

28.3     The Nuclear Atom and the Bohr Model  

*28.4   The Laser  

28.5     X-Ray Production and Scattering  

28.6     The Wave Nature of Particles  

*28.7   Wave–Particle Duality  

*28.8   The Electron Microscope  

 

Chapter 29 Atoms, Molecules, and Solids  

29.1     Electrons in Atoms  

29.2     Atomic Structure  

29.3     Diatomic Molecules  

29.4     Structure and Properties of Solids  

29.5     Energy Bands  

29.6     Semiconductors  

29.7     Semiconductor Devices  

29.8     Superconductivity  

 

Chapter 30 Nuclear and High-Energy Physics  

30.1     Properties of Nuclei  

30.2     Nuclear Stability  

30.3     Radioactivity  

30.4     Radiation and the Life Sciences  

30.5     Nuclear Reactions  

30.6     Nuclear Fission  

30.7     Nuclear Fusion  

30.8     Fundamental Particles  

30.9     High-Energy Physics  

30.10   Cosmology  

 

Erscheint lt. Verlag 1.6.2006
Verlagsort San Francisco
Sprache englisch
Maße 281 x 219 mm
Gewicht 2640 g
Themenwelt Naturwissenschaften Physik / Astronomie
ISBN-10 0-8053-9070-7 / 0805390707
ISBN-13 978-0-8053-9070-4 / 9780805390704
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich