Laboratory Guide to Enzymology -  Geoffrey A. Holdgate,  Alice Lanne,  Antonia Turberville

Laboratory Guide to Enzymology (eBook)

eBook Download: EPUB
2024 | 1. Auflage
304 Seiten
Wiley (Verlag)
978-1-394-17982-4 (ISBN)
Systemvoraussetzungen
85,99 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
LABORATORY GUIDE TO ENZYMOLOGY

An accessible guide to understanding the foundations of enzymology at its application in drug discovery

Enzymes are highly specialized proteins necessary for performing specific biochemical reactions essential for life in all organisms. In disease, the functioning of these enzymes can become altered and, therefore, enzymes represent a large class of key targets for drug discovery. In order to successfully target dysfunctional enzymes pharmaceutically, the unique mechanism of each enzyme must be understood through thorough and in-depth kinetic analysis. The topic of enzymology can appear challenging due its interdisciplinary nature combining concepts from biology, chemistry, and mathematics.

Laboratory Guide to Enzymology brings together the theory of enzymology and associated lab-based work to offer a practical, accessible guide encompassing all three scientific disciplines. Beginning with a brief introduction to proteins and enzymes, the book slowly immerses the reader into the foundations of enzymology and how it can be used in drug discovery using modern methods of experimentation. The result is a detailed but highly readable volume detailing the basis of drug discovery research.

Laboratory Guide to Enzymology readers will also find:

  • Descriptions of key concepts in enzymology
  • Examples of drugs targeting different enzymes via different mechanisms
  • Detailed discussion about many areas of enzymology such as binding and steady-state kinetics, assay development, and enzyme inhibition and activation

Laboratory Guide to Enzymology is ideal for all pharmaceutical and biomedical researchers working in enzymology and assay development, as well as advanced students in the biochemical or biomedical sciences looking to develop a working knowledge of this field of research.

Geoffrey A. Holdgate is Senior Principal Scientist in Discovery Sciences for BioPharmaceuticals Research and Development at AstraZeneca.

Antonia Turberville, PhD, is a Senior Scientist in Discovery Sciences for Biopharmaceuticals R&D at AstraZeneca.

Alice Lanne, PhD, is a Senior Scientist in Discovery Sciences for BioPharmaceuticals R&D at AstraZeneca.


LABORATORY GUIDE TO ENZYMOLOGY An accessible guide to understanding the foundations of enzymology at its application in drug discovery Enzymes are highly specialized proteins necessary for performing specific biochemical reactions essential for life in all organisms. In disease, the functioning of these enzymes can become altered and, therefore, enzymes represent a large class of key targets for drug discovery. In order to successfully target dysfunctional enzymes pharmaceutically, the unique mechanism of each enzyme must be understood through thorough and in-depth kinetic analysis. The topic of enzymology can appear challenging due its interdisciplinary nature combining concepts from biology, chemistry, and mathematics. Laboratory Guide to Enzymology brings together the theory of enzymology and associated lab-based work to offer a practical, accessible guide encompassing all three scientific disciplines. Beginning with a brief introduction to proteins and enzymes, the book slowly immerses the reader into the foundations of enzymology and how it can be used in drug discovery using modern methods of experimentation. The result is a detailed but highly readable volume detailing the basis of drug discovery research. Laboratory Guide to Enzymology readers will also find: Descriptions of key concepts in enzymology Examples of drugs targeting different enzymes via different mechanisms Detailed discussion about many areas of enzymology such as binding and steady-state kinetics, assay development, and enzyme inhibition and activation Laboratory Guide to Enzymology is ideal for all pharmaceutical and biomedical researchers working in enzymology and assay development, as well as advanced students in the biochemical or biomedical sciences looking to develop a working knowledge of this field of research.

1
Introduction to Proteins and Enzymes


CHAPTER MENU


1.1 Protein Structure


Proteins are the central functional molecules of life, encoded by DNA, translated, and expressed to carry out the essential functions of the cell. The building blocks for proteins are amino acids: every amino acid contains a positively charged amine group (N-terminus), a negatively charged carboxyl group (C-terminus), a hydrogen atom, and an R group, all centered around a chiral carbon (alpha carbon, Cα) (Figure 1.1). The presence of a chiral carbon results in stereoisomerism; naturally occurring amino acids are L-isomers, and D-isomers can arise during chemical synthesis. There are 20 different R groups, which give rise to 20 different amino acids (Figure 1.2). Amino acids can be charged (negatively and positively), polar and non-polar. These different properties contribute to different bonding interactions and architecture of the protein (Section 1.1.4) [1, 2].

1.1.1 Primary Structure


Each protein is formed of a unique sequence of amino acids, which determines the properties of the protein. These are linked by covalent peptide bonds between the amino group of one residue and the carboxyl group of the next, forming long polypeptide chains of amino acids. The number and sequence of amino acids in a polypeptide chain is known as the primary (1°) structure of a protein and is determined by the DNA sequence of the gene. Mutations to the DNA sequence may lead to changes in the amino acids in the polypeptide chain, thus altering the primary structure of the protein [1, 2].

1.1.2 Secondary Structure


The secondary structure of proteins describes the layout of the protein backbone in three dimensions. This structure is formed from the individual peptide bonds between residues, which usually are planar and trans (with the exception of proline). There are common elements that often combine to contribute to the protein backbone describing its overall fold. Rotations around the peptide bond enable hydrogen bond formation between the carbonyl oxygen group and amide hydrogen atom of spatially adjacent amino acids, resulting in folding of the polypeptide chains into secondary (2°) structures. Hydrogen bonding can also occur between amino acid side chains. Common secondary structures include the alpha helix, the beta sheet, loops, and many protein structures contain a combination of all elements [1].

Figure 1.1 General amino acid structure.

Figure 1.2 Chemical structure of amino acids.

1.1.2.1 The Alpha Helix

One of the most important structural features is the alpha helix (Figure 1.3). This is a right-handed helical structure containing 3.6 amino acid residues in each turn. It is formed when each N-H group donates a hydrogen bond to the backbone C=O group of the amino acid four residues before it in the polypeptide chain. This occurs as the C=O groups in the helix are parallel to the axis and are directionally aligned with the N-H groups to which the hydrogen bond is formed. The amino acid side chains are positioned away from the axis. Alpha helices can vary in length, although there are few examples of proteins where the helix length extends beyond 40 residues. Clearly, the first and last residue of an alpha helix cannot make hydrogen bonds to contribute to the helix, so these residues are often amino acids that can make hydrogen bonds with other parts of the protein or with the solvent. Some residues are more likely to form alpha helices than others, with alanine, leucine, arginine, methionine, and lysine having the highest propensity, although the tendency to form helices will depend on the identities of the neighboring residues. Conversely, residues such as aspartate, glycine, and proline tend not to form alpha helices. Proline cannot donate an amide hydrogen bond and also interferes sterically with the backbone of the preceding turn. However, proline may sometimes be positioned as the first residue in an alpha helix, providing structural rigidity to the helix. Often, alpha helices display an amphipathic nature, with hydrophobic residues located on one side and hydrophilic residues on the other. Another feature of alpha helices is that they tend to have a macrodipole, with the Nterminus being the positive pole. This arises as the individual microdipoles from the carbonyl groups of the peptide bonds in the helix align along the axis [1, 2].

Figure 1.3 The alpha helix.
The structure of the alpha helix is shown: the backbone of the helix is represented in cartoon, and sticks show the amino acid side chains protruding from the backbone. The colors used are from the Clustal-X color scheme (Table 1.1).

1.1.2.2 The Beta Sheet

Another common structural motif in proteins is the beta sheet (Figure 1.4). When the backbone of a protein exists in an extended conformation (beta strand), it is possible for residues to make complementary hydrogen bonds with another beta strand. These interactions may occur when the chains are aligned in the same or opposite directions. When the chains are aligned in the same direction, the arrangement is termed a parallel beta sheet, and when the chains alternate in direction, it is termed an antiparallel beta sheet. Usually, an extensive hydrogen bond network is established where the N−H groups in the backbone of one strand establish hydrogen bonds with the C=O groups in the backbone of the adjacent strand. Often, beta sheets contain around 10 residues but can be much shorter (as low as 2 or 3 residues). Beta sheets often contain large aromatic residues (tyrosine, phenylalanine, and tryptophan) and branched amino acids (threonine, isoleucine, and valine) [1, 2].

Figure 1.4 The beta sheet.
The structure of a beta sheet is shown: the backbone of the sheet is represented in cartoon, and sticks show the amino acid side chains protruding from the backbone.

1.1.2.3 Loops

There are segments of a protein that connect the alpha helix and beta sheet elements together, which in themselves do not have recognizable regular structural patterns. These secondary structural elements are termed loops (Figure 1.5). Loops are an important component of secondary structure, often containing as much as half of the total number of residues in a protein [3]. Loops often contribute significantly to the overall shape, dynamics, and physicochemical properties of the protein [4]. Loops are frequently located on the protein’s surface in solvent-exposed regions and are often involved in important interactions. Despite the lack of patterns, loops do not appear to be completely random structures, and they have been classified in various ways, including their geometrical shape [5]. However, even though their importance is recognized, loop structure remains difficult to predict.

Figure 1.5 Loop region.
The structure of a loop region is shown: the backbone of the sheet is represented in cartoon, and sticks show the amino acid side chains protruding from the backbone.

Table 1.1 Clustal-X color scheme for coloring amino acids.

Clustal-X color scheme
Category Color Residue
Hydrophobic Blue A, I, L, M, F, W, V
Positive charge Red K, R
Negative charge Magenta E, D
Polar Green N, Q, S, T
Cysteine Pink C
Glycine Orange G
Proline Yellow P
Aromatic Cyan H, Y
Unconserved White Any, gap

The primary structure of a protein influences the secondary structure, with certain residues more likely to form one structure over the other; for example, proline residues are often called “helix breakers” as their cyclic nature induces a kink in the polypeptide chain and prevent alpha helix formation. Glycine residues, for example, also are frequently involved in tight turns as they are small and flexible [2].

The image for the loop structure has been colored by structure (in the program MOE2022; red: alpha helix, yellow: beta sheet, loop: white, turn: blue). The alpha helix and beta sheet above (Figures 1.3 and 1.4) have been colored using the Clustal-X color scheme (Table 1.1).

1.1.3 Tertiary Structure


The three-dimensional (3D) structure of a protein is defined by the position of all the atoms of the polypeptide chain arranged in 3D space. This is termed the tertiary (3°) structure, and it comprises the arrangement of the secondary structural elements, as described in Section 1.1.2,...

Erscheint lt. Verlag 5.3.2024
Sprache englisch
Themenwelt Naturwissenschaften Chemie
ISBN-10 1-394-17982-0 / 1394179820
ISBN-13 978-1-394-17982-4 / 9781394179824
Haben Sie eine Frage zum Produkt?
EPUBEPUB (Adobe DRM)
Größe: 27,1 MB

Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM

Dateiformat: EPUB (Electronic Publication)
EPUB ist ein offener Standard für eBooks und eignet sich besonders zur Darstellung von Belle­tristik und Sach­büchern. Der Fließ­text wird dynamisch an die Display- und Schrift­größe ange­passt. Auch für mobile Lese­geräte ist EPUB daher gut geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine Adobe-ID und die Software Adobe Digital Editions (kostenlos). Von der Benutzung der OverDrive Media Console raten wir Ihnen ab. Erfahrungsgemäß treten hier gehäuft Probleme mit dem Adobe DRM auf.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine Adobe-ID sowie eine kostenlose App.
Geräteliste und zusätzliche Hinweise

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Eigenschaften, Verarbeitung, Konstruktion

von Erwin Baur; Dietmar Drummer; Tim A. Osswald …

eBook Download (2022)
Carl Hanser Fachbuchverlag
69,99