Relativistic Microscopic Quantum Transport Equation
Seiten
2006
Nova Science Publishers Inc (Verlag)
978-1-59454-395-1 (ISBN)
Nova Science Publishers Inc (Verlag)
978-1-59454-395-1 (ISBN)
Shows how a relativistic Boltzmann equation can be deduced from a given interaction through reckoning Feynman diagrams of quantum field theory. While discussions are concentrated on the topic of relativistic heavy-ion collisions, the introduced method may find application in the problems of neutrino transportation and electron transportation.
The violent dynamical expansion of dense matter produced in heavy-ion collisions determines that the microscopic transport theories designed for it should keep the line of time evolution and medium effects, both in the in-medium particle drifting and in-medium particle-particle scatterings. A set of relativistic transport equations for particle distribution functions have thus been developed. Starting from a Lagrangian of baryons interacting through mesons, one computes Feynman diagrams up to the Born term through employing the closed time-path Green's function technique. All the ingredients of equations are derived from the same effective interaction and presented analytically. This book clearly shows how a relativistic Boltzmann equation can be deduced from a given interaction through reckoning Feynman diagrams of quantum field theory. While discussions are concentrated on the topic of relativistic heavy-ion collisions, the introduced method is rather general, and may find it's application in the problems of neutrino transportation of astrophysics and electron transportation of solid-state physics.
The violent dynamical expansion of dense matter produced in heavy-ion collisions determines that the microscopic transport theories designed for it should keep the line of time evolution and medium effects, both in the in-medium particle drifting and in-medium particle-particle scatterings. A set of relativistic transport equations for particle distribution functions have thus been developed. Starting from a Lagrangian of baryons interacting through mesons, one computes Feynman diagrams up to the Born term through employing the closed time-path Green's function technique. All the ingredients of equations are derived from the same effective interaction and presented analytically. This book clearly shows how a relativistic Boltzmann equation can be deduced from a given interaction through reckoning Feynman diagrams of quantum field theory. While discussions are concentrated on the topic of relativistic heavy-ion collisions, the introduced method is rather general, and may find it's application in the problems of neutrino transportation of astrophysics and electron transportation of solid-state physics.
Foreword; Introduction; Nonequilibrium Greens Technique; Derivation of the Quantum Transport Equations for Hadronic Matter; Calculation of Mean Fields; Calculation of Collision Terms; Outlook; Index.
Erscheint lt. Verlag | 1.1.2006 |
---|---|
Zusatzinfo | Illustrations |
Verlagsort | New York |
Sprache | englisch |
Maße | 260 x 180 mm |
Gewicht | 430 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Quantenphysik |
ISBN-10 | 1-59454-395-X / 159454395X |
ISBN-13 | 978-1-59454-395-1 / 9781594543951 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Grundlegende Vorstellungen und Begriffe
Buch | Hardcover (2024)
Carl Hanser (Verlag)
44,99 €