Equilibrium Compound Nucleus Post-Fission Theory (eBook)

eBook Download: PDF
2024 | 1. Auflage
XXIV, 265 Seiten
Springer-Verlag
978-3-031-43316-0 (ISBN)

Lese- und Medienproben

Equilibrium Compound Nucleus Post-Fission Theory -  Qing-Biao Shen,  Ye Tian
Systemvoraussetzungen
139,09 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

This book proposes and develops the equilibrium compound nucleus post-fission theory, a powerful tool for studying the fission process and making numerical calculations of post-fission nuclear data. It begins with a detailed historical background on fission theory and covers fundamental concepts, such as the Bohr-Wheeler formula and time dependent nuclear density functional theory.

The authors explain the kinematics of heavy-ion collisions and develop a heavy-ion spherical optical model. They also present the theoretical methods for calculating the yield, kinetic energy distribution, and angular distribution of fission fragments in the initial state of fission. In addition, readers are provided with the method for calculating the prompt neutron and prompt gamma-ray data as well as the proportion of the isomeric state nucleus and independent yield from the initial yield of the fission fragments. Using the nuclear decay data of the fission products, a method for calculating the cumulative yield and decay heat of the fission fragments is also given. A fission delayed neutron simplification model is proposed and the theoretical method for calculating the total contribution of three fission channels to post-fission nuclear data is provided.

This book concludes with a step-by-step guide on numerical calculations for post-fission nuclear data and a Fortran program for optimizing the best theoretical model parameters. It is ideal for both junior and senior researchers in nuclear physics, as well as graduate students who are interested learning about the subject. Given the current interest in post-fission and the tremendous experimental and theoretical efforts in studying it, this book serves as a timely and comprehensive resource for the nuclear physics community.




Qing-Biao Shen is a researcher at the China Institute of Atomic Energy (CIAE). He was born on September 1, 1938, in Gu'an County, Hebei Province. In July 1963, he graduated from the University of Science and Technology of China with a degree in Physics under the tutelage of Mr. Hong-Yuan ZHU. In the same year, Mr. Shen joined the CIAE and from September 1963 to January 1965, he participated in a group led by Min YU and Zu-Qia HUANG working on hydrogen bomb theory.  Since then, Mr. Shen's career has focused on low and medium energy nuclear reaction theory, nuclear many-body theory, and nuclear data theory, some of which he conducted while he was a visiting scholar at the University of Kentucky from 1985 to 1987.

Mr. Shen is the recipient of twelve National or Ministerial Science and Technology Progress Awards, including five inaugural prizes, and he has published over 300 academic papers as either a lead author or co-author.  He is the author of 'Nuclear Reaction Theory of Low and Medium Energies' and 'Polarization Theory of Nuclear Reactions'. In addition, Mr. Shen developed the Skyrme force microscopic optical potential theory, a theory to this day best fitting experimental data.

Ye Tian is a associate researcher at the China Institute of Atomic Energy (CIAE). She was born on June 16, 1938, in Jinzhou, Liaoning Province. In July 1963, she graduated from the University of Science and Technology of China with a degree in Physics under the tutelage of Ms. Zhen-Xi XIAO. In the same year, Ms. Tian joined the CIAE and engaged in reactor physics firstly. She participated the scientific research and organizational work on China's first fast reactor zero power device to reach the critical experiment in 1970. When the China Nuclear Data Center was established in October 1975, she was an initial member. Then, Ms. Tian's career has focused nuclear reaction theory, nuclear many-body theory, and nuclear data theory, some of which she conducted while she was a visiting scholar at the University of Kentucky from 1986 to 1987, 1989. Later, she participated in accelerator-driven nuclear device ADS large scientific research project.

Ms. Tian is the recipient of six Ministerial Science and Technology Progress Awards, and she has published near 100 academic papers as either a lead author or co-author. In addition, Ms. Tian is the co-author of the paper developing the Skyrme force microscopic optical potential theory, a theory to this day best fitting experimental data.


Erscheint lt. Verlag 25.1.2024
Co-Autor Chong-Hai Cai
Zusatzinfo XXIV, 265 p. 114 illus., 4 illus. in color.
Sprache englisch
Original-Titel Equilibrium Compound Nucleus Post-Fission Theory
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Schlagworte Angular Distribution of Fission Fragments • Bohr-Wheeler Formula • Compound Nucleus Gamma-Ray De-Excitation Theory • Fission Delayed Neutron Simplification Model • Fission Fragment Independent Yield • Fission Prompt Neutrons • Hauser-Feshbach theory • Heavy-Ion Spherical Optical Model • Initial Yield of Fission Fragments • Kinetic Energy Distribution of Fission Fragments • Prompt Gamma-Rays • Time Dependent Generator Coordinate Method • Time Dependent Nuclear Density Functional Theory
ISBN-10 3-031-43316-5 / 3031433165
ISBN-13 978-3-031-43316-0 / 9783031433160
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 11,8 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
An Introduction

von Philip Hofmann

eBook Download (2022)
Wiley-VCH GmbH (Verlag)
48,99