Machine and Deep Learning Using MATLAB (eBook)
592 Seiten
John Wiley & Sons (Verlag)
978-1-394-20909-5 (ISBN)
In-depth resource covering machine and deep learning methods using MATLAB tools and algorithms, providing insights and algorithmic decision-making processes
Machine and Deep Learning Using MATLAB introduces early career professionals to the power of MATLAB to explore machine and deep learning applications by explaining the relevant MATLAB tool or app and how it is used for a given method or a collection of methods. Its properties, in terms of input and output arguments, are explained, the limitations or applicability is indicated via an accompanied text or a table, and a complete running example is shown with all needed MATLAB command prompt code.
The text also presents the results, in the form of figures or tables, in parallel with the given MATLAB code, and the MATLAB written code can be later used as a template for trying to solve new cases or datasets. Throughout, the text features worked examples in each chapter for self-study with an accompanying website providing solutions and coding samples. Highlighted notes draw the attention of the user to critical points or issues.
Readers will also find information on:
* Numeric data acquisition and analysis in the form of applying computational algorithms to predict the numeric data patterns (clustering or unsupervised learning)
* Relationships between predictors and response variable (supervised), categorically sub-divided into classification (discrete response) and regression (continuous response)
* Image acquisition and analysis in the form of applying one of neural networks, and estimating net accuracy, net loss, and/or RMSE for the successive training, validation, and testing steps
* Retraining and creation for image labeling, object identification, regression classification, and text recognition
Machine and Deep Learning Using MATLAB is a useful and highly comprehensive resource on the subject for professionals, advanced students, and researchers who have some familiarity with MATLAB and are situated in engineering and scientific fields, who wish to gain mastery over the software and its numerous applications.
Kamal I. M. Al-Malah received his PhD degree from Oregon State University in 1993. He served as a Professor of Chemical Engineering in Jordan and Gulf countries, as well as Former Chairman of the Chemical Engineering Department at the University of Hail in Saudi Arabia. Professor Al-Malah is an expert in both Aspen Plus¯® and MATLAB¯® applications. He has created a bundle of Windows-based software for engineering applications.
Erscheint lt. Verlag | 20.10.2023 |
---|---|
Sprache | englisch |
Themenwelt | Naturwissenschaften ► Chemie |
Schlagworte | AI • Artificial Intelligence • chemical engineering • Chemische Verfahrenstechnik • Computational / Numerical Methods • Computer-aided Engineering • Computergestützte Verfahrenstechnik • Computer Science • Deep learning • Informatik • KI • Künstliche Intelligenz • Maschinelles Lernen • Maschinenbau • MATLAB • mechanical engineering • Rechnergestützte / Numerische Verfahren im Maschinenbau |
ISBN-10 | 1-394-20909-6 / 1394209096 |
ISBN-13 | 978-1-394-20909-5 / 9781394209095 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 51,1 MB
Kopierschutz: Adobe-DRM
Adobe-DRM ist ein Kopierschutz, der das eBook vor Mißbrauch schützen soll. Dabei wird das eBook bereits beim Download auf Ihre persönliche Adobe-ID autorisiert. Lesen können Sie das eBook dann nur auf den Geräten, welche ebenfalls auf Ihre Adobe-ID registriert sind.
Details zum Adobe-DRM
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen eine
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen eine
Geräteliste und zusätzliche Hinweise
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich