Quantum Machine Learning
Springer International Publishing (Verlag)
978-3-031-44225-4 (ISBN)
Claudio Conti is an associate professor at the Department of Physics of the University Sapienza of Rome. He authored over 250 articles in many fields, such as quantum physics, photonics, nonlinear science, biophysics, and complexity. His activity includes experiments and theory, such as the first observation of replica symmetry breaking mentioned in the scientific background of the Nobel prize in physics in 2021, the investigation of neuromorphic computing by quantum fluids, and the optical acceleration of natural language processing. Claudio Conti coordinates an experimental and theoretical group in Rome exploring the frontiers of artificial intelligence and physics.
Chapter 1: Quantum mechanics and data-driven physics.- Chapter 2: Kernelizing quantum mechanics.- Chapter 3: Qubit maps.- Chapter 4: One qubit transverse-field Ising model and variational quantum algorithms.- Chapter 5: Two-qubit transverse-field Ising model and entanglement.- Chapter 6: Variational Algorithms, Quantum Approximation Optimization and Neural Network Quantum States with two-qubits.- Chapter 7: Phase space representation.- Chapter 8: States as a neural networks and gates as pullbacks.- Chapter 9: Quantum reservoir computing.- Chapter 10: Squeezing, beam splitters, and detection.- Chapter 11: Uncertainties and entanglement.- Chapter 12: Gaussian boson sampling.- Chapter 13: Variational circuits for quantum solitons.
Erscheinungsdatum | 04.01.2024 |
---|---|
Reihe/Serie | Quantum Science and Technology |
Zusatzinfo | XXIII, 378 p. 109 illus., 66 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 724 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Quantenphysik |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Boson sampling • computational many-body physics • data-driven quantum physics • Gaussian boson sampling • machine learning in quantum phase space • neural networks for quantum mechanics • neural networks in phase space • programming of quantum computers • quantum reservoir computing • Tensorflow for quantum physics |
ISBN-10 | 3-031-44225-3 / 3031442253 |
ISBN-13 | 978-3-031-44225-4 / 9783031442254 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich