Shuffle Approach Towards Quantum Affine and Toroidal Algebras -  Alexander Tsymbaliuk

Shuffle Approach Towards Quantum Affine and Toroidal Algebras (eBook)

eBook Download: PDF
2023 | 1st ed. 2023
XI, 130 Seiten
Springer Nature Singapore (Verlag)
978-981-99-3150-7 (ISBN)
Systemvoraussetzungen
48,14 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book is based on the author's mini course delivered at Tokyo University of Marine Science and Technology in March 2019. 

The shuffle approach to Drinfeld-Jimbo quantum groups of finite type (embedding their 'positive' subalgebras into q-deformed shuffle algebras) was first developed independently in the 1990s by J. Green, M. Rosso, and P. Schauenburg. Motivated by similar ideas, B. Feigin and A. Odesskii proposed a shuffle approach to elliptic quantum groups around the same time. The shuffle algebras in the present book can be viewed as trigonometric degenerations of the Feigin-Odesskii elliptic shuffle algebras. They provide combinatorial models for the 'positive' subalgebras of quantum affine algebras in their loop realizations. These algebras appeared first in that context in the work of B. Enriquez.

Over the last decade, the shuffle approach has been applied to various problems in combinatorics (combinatorics of Macdonald polynomials and Dyck paths, generalization to wreath Macdonald polynomials and operators), geometric representation theory (especially the study of quantum algebras' actions on the equivariant K-theories of various moduli spaces such as affine Laumon spaces, Nakajima quiver varieties, nested Hilbert schemes), and mathematical physics (the Bethe ansatz, quantum Q-systems, and quantized Coulomb branches of quiver gauge theories, to name just a few).

While this area is still under active investigation, the present book focuses on quantum affine/toroidal algebras of type A and their shuffle realization, which have already illustrated a broad spectrum of techniques. The basic results and structures discussed in the book are of crucial importance for studying intrinsic properties of quantum affinized algebras and are instrumental to the aforementioned applications.

This book is based on the author's mini course delivered at Tokyo University of Marine Science and Technology in March 2019. The shuffle approach to Drinfeld-Jimbo quantum groups of finite type (embedding their "e;positive"e; subalgebras into q-deformed shuffle algebras) was first developed independently in the 1990s by J. Green, M. Rosso, and P. Schauenburg. Motivated by similar ideas, B. Feigin and A. Odesskii proposed a shuffle approach to elliptic quantum groups around the same time. The shuffle algebras in the present book can be viewed as trigonometric degenerations of the Feigin-Odesskii elliptic shuffle algebras. They provide combinatorial models for the "e;positive"e; subalgebras of quantum affine algebras in their loop realizations. These algebras appeared first in that context in the work of B. Enriquez.Over the last decade, the shuffle approach has been applied to various problems in combinatorics (combinatorics of Macdonald polynomials and Dyck paths, generalization to wreath Macdonald polynomials and operators), geometric representation theory (especially the study of quantum algebras' actions on the equivariant K-theories of various moduli spaces such as affine Laumon spaces, Nakajima quiver varieties, nested Hilbert schemes), and mathematical physics (the Bethe ansatz, quantum Q-systems, and quantized Coulomb branches of quiver gauge theories, to name just a few).While this area is still under active investigation, the present book focuses on quantum affine/toroidal algebras of type A and their shuffle realization, which have already illustrated a broad spectrum of techniques. The basic results and structures discussed in the book are of crucial importance for studying intrinsic properties of quantum affinized algebras and are instrumental to the aforementioned applications.
Erscheint lt. Verlag 8.9.2023
Reihe/Serie SpringerBriefs in Mathematical Physics
SpringerBriefs in Mathematical Physics
Zusatzinfo XI, 130 p. 1 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Combinatorial Representations • Quantum affine algebras • Quantum Toroidal Algebras • Representation Theory • Shuffle Approach
ISBN-10 981-99-3150-9 / 9819931509
ISBN-13 978-981-99-3150-7 / 9789819931507
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich