Hochschild Cohomology, Modular Tensor Categories, and Mapping Class Groups I (eBook)
IX, 68 Seiten
Springer Nature Singapore (Verlag)
978-981-19-4645-5 (ISBN)
The book addresses a key question in topological field theory and logarithmic conformal field theory: In the case where the underlying modular category is not semisimple, topological field theory appears to suggest that mapping class groups do not only act on the spaces of chiral conformal blocks, which arise from the homomorphism functors in the category, but also act on the spaces that arise from the corresponding derived functors. It is natural to ask whether this is indeed the case. The book carefully approaches this question by first providing a detailed introduction to surfaces and their mapping class groups. Thereafter, it explains how representations of these groups are constructed in topological field theory, using an approach via nets and ribbon graphs. These tools are then used to show that the mapping class groups indeed act on the so-called derived block spaces. Toward the end, the book explains the relation to Hochschild cohomology of Hopf algebras and the modular group.
Erscheint lt. Verlag | 25.7.2023 |
---|---|
Reihe/Serie | SpringerBriefs in Mathematical Physics | SpringerBriefs in Mathematical Physics |
Zusatzinfo | IX, 68 p. 16 illus., 14 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Mathematik ► Allgemeines / Lexika |
Mathematik / Informatik ► Mathematik ► Algebra | |
Mathematik / Informatik ► Mathematik ► Geometrie / Topologie | |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Hochschild Cohomology • Hopf algebra • Modular group • Modular tensor category • the Birman sequence |
ISBN-10 | 981-19-4645-0 / 9811946450 |
ISBN-13 | 978-981-19-4645-5 / 9789811946455 |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
Größe: 768 KB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich