Guide to Modern Physics
CRC Press (Verlag)
978-1-032-49686-3 (ISBN)
Key Features:
Concise summary of the physics concepts.
Over 300 worked examples in Mathematica.
Tutorial to allow a beginner to produce fast results.
The companion code for this book can be found here: https://physics.bu.edu/~rohlf/code.html
James Rohlf is a Professor at Boston University. As a graduate student he worked on the first experiment to trigger on hadron jets with a calorimeter, Fermilab E260. His thesis (G. C. Fox, advisor, C. Barnes, R. P. Feynman, R. Gomez) used the model of Field and Feynman to compare observed jets from hadron collisions to that from electron-positron collisions and made detailed acceptance corrections to arrive at first the measurement of quark-quark scattering cross sections. His thesis is published in Nuclear Physics B171 (1980) 1. At the Cornell Electron Storage Rings, he worked on the discovery of the Upsilon (4S) resonance and using novel event shape variables developed by Stephen Wolfram and his thesis advisor, Geoffrey Fox. He performed particle identification of kaons and charmed mesons to establish the quark decay sequence, b –> c. At CERN, he worked on the discovery of the W and Z bosons and measurement of their properties. Presently, he is working on the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) which discovered the Higgs boson and is searching for new phenomena beyond the standard model.
James Rohlf is a Professor at Boston University. As a graduate student he worked on the first experiment to trigger on hadron jets with a calorimeter, Fermilab E260. His thesis (G. C. Fox, advisor, C. Barnes, R. P. Feynman, R. Gomez) used the model of Field and Feynman to compare observed jets from hadron collisions to that from electron-positron collisions and made detailed acceptance corrections to arrive at first the measurement of quark-quark scattering cross sections. His thesis is published in Nuclear Physics B171 (1980) 1. At the Cornell Electron Storage Rings, he worked on the discovery of the Upsilon (4S) resonance and using novel event shape variables developed by Steven Wolfram and his thesis advisor, Geoffrey Fox. He performed particle identification of kaons and charmed mesons to establish the quark decay sequence, b –> c. At CERN, he worked on the discovery of the W and Z bosons and measurement of their properties. Presently, he is working on the Compact Muon Solenoid (CMS) experiment at the CERN Large Hadron Collider (LHC) which discovered the Higgs boson and is searching for new phenomena beyond the standard model.
1. Basis of Modern Physics 2. Thermal Radiation 3. Key Processes 4. Special Relativity 5. Bohr Model 6. Particle in a Box 7. Quantum Harmonic Oscillator 8. Hydrogen Atom 9. Statistical Physics 10. Astrophysics Appendix A: Mathematica Starter Appendix B: Physical Constants
Erscheinungsdatum | 09.11.2023 |
---|---|
Zusatzinfo | 4 Tables, black and white; 69 Line drawings, black and white; 69 Illustrations, black and white |
Verlagsort | London |
Sprache | englisch |
Maße | 156 x 234 mm |
Gewicht | 360 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Angewandte Mathematik |
Naturwissenschaften ► Biologie | |
Naturwissenschaften ► Physik / Astronomie | |
ISBN-10 | 1-032-49686-X / 103249686X |
ISBN-13 | 978-1-032-49686-3 / 9781032496863 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich