Nonequilibrium Phase Transitions in Lattice Models
Seiten
1999
Cambridge University Press (Verlag)
978-0-521-48062-8 (ISBN)
Cambridge University Press (Verlag)
978-0-521-48062-8 (ISBN)
An introduction to nonequilibrium statistical physics via lattice models; for researchers.
This book provides an introduction to nonequilibrium statistical physics via lattice models. Beginning with an introduction to the basic driven lattice gas, the early chapters discuss the relevance of this lattice model to certain natural phenomena and examine simulation results in detail. Several possible theoretical approaches to the driven lattice gas are presented. In the next two chapters, absorbing-state transitions are discussed in detail. The later chapters examine a variety of systems subject to dynamic disorder before returning to look at the more surprising effects of multiparticle rules, nonunique absorbing-states and conservation laws. Examples are given throughout the book, the emphasis being on using simple representations of nature to describe ordering in real systems. The use of methods such as mean-field theory, Monte Carlo simulation, and the concept of universality to study and interpret these models is described. Detailed references are included.
This book provides an introduction to nonequilibrium statistical physics via lattice models. Beginning with an introduction to the basic driven lattice gas, the early chapters discuss the relevance of this lattice model to certain natural phenomena and examine simulation results in detail. Several possible theoretical approaches to the driven lattice gas are presented. In the next two chapters, absorbing-state transitions are discussed in detail. The later chapters examine a variety of systems subject to dynamic disorder before returning to look at the more surprising effects of multiparticle rules, nonunique absorbing-states and conservation laws. Examples are given throughout the book, the emphasis being on using simple representations of nature to describe ordering in real systems. The use of methods such as mean-field theory, Monte Carlo simulation, and the concept of universality to study and interpret these models is described. Detailed references are included.
Preface; 1. Introduction; 2. Driven lattice gases: simulations; 3. Driven lattice gases: theory; 4. Lattice gases with reaction; 5. Catalysis models; 6. The contact process; 7. Models of disorder; 8. Conflicting dynamics; 9. Particle reaction models; Bibliography; Index.
Erscheint lt. Verlag | 6.5.1999 |
---|---|
Reihe/Serie | Collection Alea-Saclay: Monographs and Texts in Statistical Physics |
Zusatzinfo | 1 Tables, unspecified; 98 Line drawings, unspecified |
Verlagsort | Cambridge |
Sprache | englisch |
Maße | 170 x 244 mm |
Gewicht | 750 g |
Themenwelt | Naturwissenschaften ► Physik / Astronomie ► Thermodynamik |
ISBN-10 | 0-521-48062-0 / 0521480620 |
ISBN-13 | 978-0-521-48062-8 / 9780521480628 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
Mehr entdecken
aus dem Bereich
aus dem Bereich
Hauptsätze, Prozesse, Wärmeübertragung
Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
44,95 €