Physicochemical Interactions of Engineered Nanoparticles and Plants
Academic Press Inc (Verlag)
978-0-323-90558-9 (ISBN)
Engineered nanomaterials (ENMs) reach plant ecosystems through intentional or unintentional pathways. In any case, after release, these materials may be transformed in the environment by physical, chemical and biochemical processes. Once in contact with plant systems, biotransformation may still occur, affecting or stimulating plant metabolism. Since plants are the producers to the food chain, it is of paramount importance to understand these mechanisms at the molecular level.
Dr Guadalupe de la Rosa is a Professor at Universidad de Guanajuato in the Department of Chemical, Electronic and Biomedical Engineering. She received her PhD in Engineering and Environmental Sciences at the University of Texas at El Paso, USA, and conducted her postdoctoral stay at the Center for Environmental Implications of Nanotechnology, University of California at Los Angeles. In 2012, she served as the Head of the Department of Research Affairs and 2012-2014, she served as Head of the Chemical, Electronic and Biomedical Engineering Department. She has authored over 40 articles and 5 book chapters. Her research focuses on the characterization and remediation of sites contaminated with metals, application of Synchrotron Light techniques in solving environmental problems, and the production of nanomaterials with green chemistry and their applications. Dr. Jose R. Peralta-Videa was an Adjunct Professor in the Department of Chemistry and Biochemistry and the Environmental Science and Engineering PhD program at the University of Texas at El Paso until February 2023. He earned a Doctor of Science degree from the Genetic Center in the Postgraduate College at Chapingo, Mexico, 1986 and a Ph.D. in Environmental Science and Engineering from The University of Texas at El Paso in 2002. His research is focused on the area of nanotoxicology, with an emphasis on the toxicity of nanoparticles in terrestrial systems. He has published more than 220 referred articles, 25 book chapters, 19 proceedings, and 4 manuals/booklets. As Senior Research Associate of Dr. Gardea-Torresdey, former Chair of the Chemistry Department, Dr. Peralta-Videa was an active member of the University of California Center for Environmental Implications of Nanotechnology (UC CEIN). UTEP was the branch of UC CEIN responsible for investigating the interaction of nanoparticles with terrestrial plants.
Section I. Introduction 1. Why is this topic important? 2. Source, fate and transport of ENMs in the environment, especially those that may eventually reach plant systems.
Section II Biogeochemical cycle of ENMs before plant exposure explained at the molecular level 3. Biophysicochemical transformations of ENMs in soil 4. Biophysicochemical transformations of ENMs in water 5. Biophysicochemical transformations of ENMs in air
Section III Molecular interaction of ENMs and plants: Reactions and mechanisms 6. Biophysicochemical transformation of ENMs at the root level 7. Chemical reactions and mechanisms of ENMs transport in plants 8. Biotransformation of ENMs in leaves 9. ENMs and plants: Are the reaction products more or less toxic? 10. Biodegradation of plants laden with ENMs
Erscheinungsdatum | 21.10.2022 |
---|---|
Reihe/Serie | Nanomaterial-Plant Interactions |
Zusatzinfo | 80 illustrations (40 in full color); Illustrations |
Verlagsort | Oxford |
Sprache | englisch |
Maße | 152 x 229 mm |
Gewicht | 570 g |
Themenwelt | Naturwissenschaften ► Biologie ► Biochemie |
Naturwissenschaften ► Biologie ► Botanik | |
ISBN-10 | 0-323-90558-7 / 0323905587 |
ISBN-13 | 978-0-323-90558-9 / 9780323905589 |
Zustand | Neuware |
Informationen gemäß Produktsicherheitsverordnung (GPSR) | |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich