Noncommutative Geometry
Springer Berlin (Verlag)
978-3-540-20357-5 (ISBN)
Noncommutative Geometry is one of the most deep and vital research subjects of present-day Mathematics. Its development, mainly due to Alain Connes, is providing an increasing number of applications and deeper insights for instance in Foliations, K-Theory, Index Theory, Number Theory but also in Quantum Physics of elementary particles. The purpose of the Summer School in Martina Franca was to offer a fresh invitation to the subject and closely related topics; the contributions in this volume include the four main lectures, cover advanced developments and are delivered by prominent specialists.
Cyclic Cohomology, Noncommutative Geometry and Quantum Group Symmetries.- Cyclic Theory and the Bivariant Chern-Connes Character.- Group C*-Algebras and K-Theory.- Geometric and Analytic Properties of Groups.- More Lectures on Algebraic Quantum Field Theory.
Erscheint lt. Verlag | 8.12.2003 |
---|---|
Reihe/Serie | C.I.M.E. Foundation Subseries | Lecture Notes in Mathematics |
Zusatzinfo | XVI, 356 p. |
Verlagsort | Berlin |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 560 g |
Themenwelt | Mathematik / Informatik ► Mathematik ► Analysis |
Naturwissenschaften ► Physik / Astronomie ► Quantenphysik | |
Schlagworte | 58B34, 46L87, 81R60, 83C65 • C -algebra • C*-algebra • C -algebras • C*-algebras • cyclic cohomology • Geometrie • K-theory • Noncommutative Geometry • quantum field theory • Quantum Physics |
ISBN-10 | 3-540-20357-5 / 3540203575 |
ISBN-13 | 978-3-540-20357-5 / 9783540203575 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich