Patterns Identification and Data Mining in Weather and Climate (eBook)
XXIV, 600 Seiten
Springer International Publishing (Verlag)
978-3-030-67073-3 (ISBN)
Advances in computer power and observing systems has led to the generation and accumulation of large scale weather & climate data begging for exploration and analysis. Pattern Identification and Data Mining in Weather and Climate presents, from different perspectives, most available, novel and conventional, approaches used to analyze multivariate time series in climate science to identify patterns of variability, teleconnections, and reduce dimensionality. The book discusses different methods to identify patterns of spatiotemporal fields. The book also presents machine learning with a particular focus on the main methods used in climate science. Applications to atmospheric and oceanographic data are also presented and discussed in most chapters. To help guide students and beginners in the field of weather & climate data analysis, basic Matlab skeleton codes are given is some chapters, complemented with a list of software links toward the end of the text. A number of technical appendices are also provided, making the text particularly suitable for didactic purposes.
The topic of EOFs and associated pattern identification in space-time data sets has gone through an extraordinary fast development, both in terms of new insights and the breadth of applications. We welcome this text by Abdel Hannachi who not only has a deep insight in the field but has himself made several contributions to new developments in the last 15 years.
- Huug van den Dool, Climate Prediction Center, NCEP, College Park, MD, U.S.A.
Now that weather and climate science is producing ever larger and richer data sets, the topic of pattern extraction and interpretation has become an essential part. This book provides an up to date overview of the latest techniques and developments in this area.
- Maarten Ambaum, Department of Meteorology, University of Reading, U.K.
This nicely and expertly written book covers a lot of ground, ranging from classical linear pattern identification techniques to more modern machine learning, illustrated with examples from weather & climate science. It will be very valuable both as a tutorial for graduate and postgraduate students and as a reference text for researchers and practitioners in the field.
- Frank Kwasniok, College of Engineering, University of Exeter, U.K.
Abdelwaheb Hannachi is an Associate Professor in the Department of Meteorology of Stockholm University, MISU. He currently serves as editor in chief of Tellus A: Dynamic Meteorology and Oceanography. Abdel. teaches a number of undergraduate and postgraduate courses, including dynamic meteorology, statistical climatology, and numerical weather prediction and data assimilation, and boundary layer turbulence. His main research interests are large-scale dynamics, teleconnections, nonlinearity in weather and climate in addition to extremes and forecasting.
Erscheint lt. Verlag | 6.5.2021 |
---|---|
Reihe/Serie | Springer Atmospheric Sciences | Springer Atmospheric Sciences |
Zusatzinfo | XXIV, 600 p. 201 illus., 79 illus. in color. |
Sprache | englisch |
Themenwelt | Mathematik / Informatik ► Informatik ► Datenbanken |
Naturwissenschaften ► Geowissenschaften | |
Technik | |
Schlagworte | Atmospheric Data Analysis • Coupled Patterns • empirical orthogonal functions • Multivariate Extremes • Pattern Identification • Regularised EOFs • Rotated, Trend, Extended and Kernel EOFs • Weather and Climate Data Mining |
ISBN-10 | 3-030-67073-2 / 3030670732 |
ISBN-13 | 978-3-030-67073-3 / 9783030670733 |
Haben Sie eine Frage zum Produkt? |
Größe: 21,4 MB
DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasserzeichen und ist damit für Sie personalisiert. Bei einer missbräuchlichen Weitergabe des eBooks an Dritte ist eine Rückverfolgung an die Quelle möglich.
Dateiformat: PDF (Portable Document Format)
Mit einem festen Seitenlayout eignet sich die PDF besonders für Fachbücher mit Spalten, Tabellen und Abbildungen. Eine PDF kann auf fast allen Geräten angezeigt werden, ist aber für kleine Displays (Smartphone, eReader) nur eingeschränkt geeignet.
Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.
Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.
aus dem Bereich