Bioprospecting of Microorganism-Based Industrial Molecules -

Bioprospecting of Microorganism-Based Industrial Molecules

Buch | Hardcover
448 Seiten
2022
John Wiley & Sons Inc (Verlag)
978-1-119-71724-9 (ISBN)
194,69 inkl. MwSt
Discover a comprehensive and current overview of microbial bioprospecting written by leading voices in the field

In Bioprospecting of Microorganism-Based Industrial Molecules, distinguished researchers and authors Sudhir P. Singh and Santosh Kumar Upadhyay deliver global perspectives of bioprospecting of biodiversity. The book covers diverse aspects of bioprospecting of microorganisms demonstrating biomass value of nutraceutical, pharmaceutical, biomedical, and bioenergetic importance.

The authors present an amalgamation of translational research on bioresource utilization and ecological sustainability that will further the reader’s knowledge of the applications of different microbial diversity and reveal new avenues of research investigation.

Readers will also benefit from:



A thorough introduction to microbial biodiversity and bioprospecting
An exploration of anti-ageing and skin lightening microbial products and microbial production of anti-cancerous biomolecules
A treatment of UV protective compounds from algal biodiversity and polysaccharides from marine microalgal sources
Discussions of microbial sources of insect toxic proteins and the role of microbes in bio-surfactants production

Perfect for academics, scientists, researchers, graduate and post-graduate students working and studying in the areas of microbiology, food biotechnology, industrial microbiology, plant biotechnology, and microbial biotechnology, Bioprospecting of Microorganism-Based Industrial Molecules is an indispensable guide for anyone looking for a comprehensive overview of the subject.

Sudhir P. Singh, Scientist-D, Biotechnology & Synthetic Biology, Center of Innovative and Applied Bioprocessing, Mohali, India. He has been working in the field of molecular biology and biotechnology for more than a decade. His current research is focused on gene mining and biocatalyst engineering for the development of approaches for transformation of agro-industrial residues and under- or un-utilized side-stream biomass into value-added bio-products. Santosh Kumar Upadhyay, Assistant Professor, Department of Botany, Panjab University, Chandigarh, India. He has been working in the field of plant biotechnology for more than 14 years. His current research focuses on functional genomics.

About the Editors xvi

List of Contributors xviii

Preface xxiii

Acknowledgments xxiv

1 An Introduction to Microbial Biodiversity and Bioprospection 1
Tomoya Shintani, Santosh Kumar Upadhyay, and Sudhir P. Singh

1.1 Introduction 1

1.1.1 Microorganisms 1

1.1.2 Bioprospecting 1

1.1.3 Bioprospection of Microorganisms 2

1.2 Conclusions and Perspectives 3

Acknowledgment 4

References 4

2 Application of Microorganisms in Biosurfactant Production 6
Lorena Pedraza- Segura, Luis V. Rodríguez- Durán, Gerardo Saucedo- Castañeda, and José de Jesús Cázares- Marinero

2.1 Biosurfactants Nature and Classification 6

2.2 Biosynthesis of BS by Archaea and Bacteria 12

2.3 Biosynthesis of BS by Yeasts and Molds 14

2.4 Screening for BS Producers 15

2.5 A Case Study: SL by Solid- State Fermentation (SSF), Kinetics, and Reactor Size Estimation 16

2.6 Conclusions and Perspectives 23

References 24

3 Microbial Gums: Current Trends and Applications 31
Rwivoo Baruah and Prakash M. Halami

3.1 Introduction 31

3.2 Biosynthesis of Microbial Gums 32

3.3 Production of Microbial Gums 33

3.4 Structure and Properties of Microbial Gums 34

3.5 Types of Microbial Gums 34

3.5.1 Xanthan Gum 36

3.5.2 Sphingans 36

3.5.2.1 Gellan Gum 36

3.5.2.2 Welan Gum 37

3.5.2.3 Rhamsan Gum 37

3.5.2.4 Diutan Gum 38

3.5.3 Pullulan 38

3.5.4 Other Microbial Gums 38

3.6 Applications of Microbial Gums 39

3.6.1 Food Applications 40

3.6.2 Biomedical Applications 41

3.6.3 Applications in Nanotechnology 42

3.7 Conclusions and Perspectives 42

Acknowledgments 43

References 43

4 Antiaging and Skin Lightening Microbial Products 47
Prabuddha Gupta, Ujwalkumar Trivedi, Mahendrapalsingh Rajput, Tejas Oza, Jasmita Chauhan, and Gaurav Sanghvi

4.1 Introduction 47

4.2 Aging 48

4.2.1 Structure of Skin 48

4.2.2 Skin Aging Factors 50

4.2.3 Intrinsic Skin Aging Factors 50

4.2.3.1 Anatomical and Histological Changes 50

4.2.3.2 Telomere Shortening 50

4.2.3.3 Metabolic ROS Production 51

4.2.3.4 Upregulation of Matrix Metalloproteinases 51

4.2.3.5 Mitochondrial Dysfunction 51

4.2.3.6 Mutations and Oncogenesis 51

4.3 Extrinsic Skin Aging Factors 52

4.3.1 Photoaging 52

4.3.2 Tobacco Smoking 52

4.3.3 Air Pollution 53

4.4 Why Microbes 53

4.4.1 Bacterial Compounds 54

4.4.2 Polysaccharides and Oligosaccharides 54

4.4.2.1 Hyaluronic Acid 54

4.4.2.2 Bacterial Cellulose 55

4.4.2.3 Astaxanthin and Equol 55

4.4.3 Fungi Compounds 56

4.4.3.1 Tyrosinase Inhibition 56

4.4.3.2 Hyaluronidase Inhibition 56

4.4.3.3 Collagenase and Elastase Inhibition 57

4.4.4 Algae Compounds 57

4.4.4.1 Carbohydrates from Algae 58

4.4.4.2 Fucoidan 60

4.4.4.3 Laminaran 60

4.4.4.4 Ulvans 60

4.4.4.5 Porphyran 61

4.4.4.6 Carrageenan 61

4.4.4.7 Agar 61

4.4.4.8 Alginic Acids 62

4.4.5 Pigments from Algae 62

4.4.5.1 Phycobiliproteins 62

4.4.5.2 Chlorophylls 64

4.4.5.3 Carotenoids 64

4.4.5.4 β- carotene 64

4.4.5.5 Canthaxanthins 66

4.4.5.6 Astaxanthin 66

4.4.5.7 Fucoxanthin 66

4.4.5.8 Zeaxanthin 66

4.4.5.9 Violaxanthin 66

4.4.6 Secondary Metabolites 67

4.5 Conclusions and Perspectives 67

References 68

5 Application of Microorganisms in Bioremediation 77
Himani Thakkar and Vinnyfred Vincent

5.1 Introduction 77

5.2 Microbial Bioremediation 78

5.3 Microbial Bioremediation of Organic Pollutants 79

5.3.1 Bioremediation of Alkanes 79

5.3.2 Bioremediation of Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX) 80

5.3.3 Bioremediation of Polyaromatic Hydrocarbons 80

5.3.3.1 Degradation of High- Molecular- Weight Polyaromatic Hydrocarbons 83

5.3.4 Fungal Degradation of Polyaromatic Hydrocarbons 83

5.3.4.1 Bioremediation of PAHs by Ligninolytic Fungi 84

5.3.4.2 Catabolism of PAHs by Non- Ligninolytic Fungi 84

5.3.5 Bioremediation of Pesticides by Microbes 84

5.4 Microbial Degradation of Heavy Metals 87

5.5 Factors Affecting Bioremediation 89

5.5.1 Abiotic Factors 90

5.5.2 Biotic Factors 91

5.6 Advances in Bioremediation 91

5.7 Conclusions and Perspectives 94

References 95

6 Microbial Applications in Organic Acid Production 104
Jyoti Singh Jadaun, Amit K. Rai, and Sudhir P. Singh

6.1 Introduction 104

6.2 Glycolic acid (2C) 105

6.3 Acetic Acid (2C) 108

6.4 Pyruvic Acid (3C) 108

6.5 Lactic Acid (3C) 109

6.6 Succinic Acid (4C) 109

6.7 Fumaric Acid (4C) 110

6.8 Malic Acid (4C) 111

6.9 Itaconic Acid (5C) 112

6.10 Gluconic Acid (6C) 113

6.11 Citric Acid (6C) 114

6.12 Kojic Acid (6C) 114

6.13 Muconic and Adipic Acid (C6) 115

6.14 Conclusions and Perspectives 117

Acknowledgments 117

References 117

7 Production of Bioactive Compounds vs. Recombinant Proteins 125
Maria F. Salazar Affonso, Débora Bublitz Anton, Daniel Kuhn, Bruno Dahmer, Camile Wünsch, Verônica Contini, Luís F. Saraiva Macedo Timmers, Claucia F. Volken de Souza, Márcia I. Goettert, and Rodrigo G. Ducati

7.1 Introduction 125

7.2 In vitro Cell-Based Assays 126

7.3 Cell Viability Assays 127

7.4 Cell Metabolic Assays 127

7.5 Cell Survival Assays 128

7.6 Cell Transformation Assays 129

7.7 Cell Irritation Assays 129

7.8 Heterologous Expression of Recombinant Proteins of Biomedical Relevance 130

7.9 Lactic Acid Bacteria and the Production of Metabolites with Therapeutic Roles 132

7.10 Preclinical Studies 134

7.10.1 Acute Toxicity 135

7.10.2 Repeated Dose Toxicity 136

7.10.3 Genotoxicity 136

7.10.4 Carcinogenicity 136

7.10.5 Reproductive Toxicity 137

7.11 Computer-aided Drug Design 137

7.12 Conclusions and Perspectives 140

References 140

8 Microbial Production of Antimicrobial and Anticancerous Biomolecules 147
M. Indira, T. C. Venkateswarulu, S. Krupanidhi, and K. Abraham Peele

8.1 Introduction 147

8.2 Microbial Sources 148

8.2.1 Bacteria 148

8.2.2 Fungi 149

8.2.3 Actinomycetes 150

8.2.4 Extremophiles 150

8.3 Microbial Bioprospecting Methods 151

8.3.1 Cultural Bioprospecting 151

8.3.2 Nonculturable Microorganism’s Bioprospecting 152

8.3.3 In Silico Bioprospecting of Microorganisms 152

8.4 Bioactive Compounds 153

8.4.1 Antibiotics 155

8.4.2 Bacteriocins 155

8.4.3 Biosurfactants 156

8.4.4 Exopolysaccharides 156

8.4.5 Enzymes 157

8.4.6 Biopolymers 158

8.4.7 Bioenergy Compounds 158

8.4.8 Anticancer Compounds 158

8.5 Future Prospects 160

8.6 Conclusions and Perspectives 160

Acknowledgments 161

References 161

9 Microbial Fuel Cells and Plant Microbial Fuel Cells to Degradation of Polluted Contaminants in Soil and Water 170
Chung-Yu Guan and Chang-Ping Yu

9.1 Introduction 170

9.2 History 172

9.3 Electricigens 173

9.3.1 Electricigens of Bacteria 173

9.3.2 Electrocigens of Fungi 175

9.4 Electron Generation and Transfer Mechanisms of Electricigens 175

9.4.1 Electron Generation Mechanism 175

9.4.2 Electron Transfer Mechanism 175

9.4.3 Biofilm Mechanism 176

9.4.4 Electron Shuttle Mechanism 176

9.4.5 Electron Transfer by Exogenous Mediators 176

9.4.6 Microbial Secondary Metabolites for Electron Transfer 177

9.4.7 Oxidation of Reduced Primary Metabolites 177

9.5 Materials 177

9.5.1 Anode Materials 177

9.5.2 Base Materials of the Anode 177

9.5.3 The Modification of Anode Materials 178

9.5.4 Cathode Materials 179

9.5.5 Carbon-Based Materials of Cathodes 179

9.5.6 Non-Carbon-Based Materials 179

9.5.7 Cathode Catalyst 180

9.5.8 Biocathode 181

9.5.9 Separator Materials 181

9.5.9.1 Conventional Separator Materials 181

9.5.9.2 New Separator Materials 181

9.6 Design and Operation of Bioelectrochemical Systems 182

9.6.1 MFC Configuration 182

9.6.1.1 Two-Compartment MFCs 182

9.6.1.2 Air Cathode MFC 184

9.6.1.3 Other Configurations 185

9.6.2 Soil MFC and PMFC Configurations 185

9.6.2.1 Dual-Chamber of Soil MFCs and PMFCs 185

9.6.2.2 Single-Chamber MFCs 186

9.6.2.3 Air-Diffusion Cathode System 186

9.6.2.4 Other Configuration of PMFCs 187

9.7 Performances of the MFCs in Actual Wastewater Treatment 187

9.7.1 Industrial Wastewater 187

9.7.2 Domestic and Livestock Wastewater 188

9.8 Soil MFCs for Soil Remediation 189

9.8.1 Remediation of Organic Contaminated Soils 189

9.8.2 Remediation of Heavy Metal Contaminated Soils 189

9.9 PMFCs for Environmental Remediation 190

9.9.1 PMFCs for Wastewater Treatment 190

9.9.2 PMFCs for Soil Remediation 190

9.10 Prospectives 191

9.11 Conclusions 191

References 192

10 Microalgae- Based UV Protection Compounds 201
Jorge Alberto Vieira Costa, Juliana Botelho Moreira, Gabrielle Guimarães Izaguirres, Liliane Martins Teixeira, and Michele Greque de Morais

10.1 Introduction 201

10.2 UV Radiation 202

10.3 Protection Compounds Induced by UV Radiation 202

10.3.1 Mycosporine- Like Amino Acids 203

10.3.2 Phenolic Compounds 203

10.3.3 Carotenoids 203

10.3.4 Phycocyanin 204

10.3.5 Polyamines 204

10.3.6 Scytonemin 205

10.4 Microalgal Biotechnology for the Production of Photoprotective Compounds 206

10.5 Effects of UV Radiation on the Growth, Morphology, and Production of Lipids, Proteins, and Carbohydrates 209

10.6 Extraction Methods of Photoprotective Compounds 211

10.7 Prospects for Commercial Applications 213

10.8 Conclusion and Perspectives 215

References 215

11 Microorganisms as a Potential Source of Antioxidants 225
Ayerim Hernández-Almanza, Nathiely Ramírez-Guzman, Gloria A. Martínez-Medina, Araceli Loredo-Treviño, Deepak Kumar Verma, and Cristobal N. Aguilar

11.1 Introduction 225

11.2 Antioxidant-Producing Microorganisms 225

11.3 Production of Some Microbial Antioxidants and Their Action Mechanisms 226

11.3.1 Peptides 226

11.3.2 Pigments 227

11.3.3 Polyphenols 229

11.4 Extraction and Purification of Microbial Antioxidants 230

11.4.1 Extraction of Microbial Antioxidants 230

11.4.2 Purification of Microbial Antioxidants 231

11.5 Evaluation of Antioxidant Activity 231

11.5.1 Classical Methods 232

11.5.2 Cellular Methods 234

11.6 Conclusions and Perspectives 235

References 236

12 Microbial Production of Biomethane from Digested Waste and Its Significance 242
Arun Kumar Pal, Vijay Tripathi, Prashant Kumar, and Pradeep Kumar

12.1 Introduction 242

12.2 Methane 243

12.2.1 Source of Methane 243

12.2.1.1 Industry 244

12.2.1.2 Agriculture 244

12.2.1.3 Waste 244

12.2.2 Biomethane 245

12.3 Types of Waste 245

12.3.1 Biological Waste 247

12.3.2 Household Waste 247

12.3.3 Agricultural Waste 248

12.4 Digestion Processes of Organic Wastes 248

12.4.1 Hydrolysis of Organic Waste 248

12.4.2 Acidogenesis of Hydrolyzed Matter 249

12.4.3 Acetogenesis 249

12.4.3.1 Methanogenesis 250

12.5 Conclusions and Perspectives 250

Acknowledgments 250

Conflicts of Interest 250

References 250

13 Enzymatic Biosynthesis of Carbohydrate Biopolymers and Uses Thereof 254
Manisha Sharma, Jyoti Singh Jadaun, Santosh Kumar Upadhyay, and Sudhir P. Singh

13.1 Introduction 254

13.2 Dextran 255

13.2.1 Mechanism of Dextran Production 255

13.2.2 Production of Dextran at Industrial Level 255

13.2.3 Applications of Dextran 256

13.3 Chitin and Chitosan 256

13.3.1 Biological Extraction of Chitin 257

13.3.1.1 Biosynthesis of Chitin and Chitosan 257

13.3.1.2 Chitin and Chitosan- Producing Fungi 257

13.3.1.3 Enzymatic Deproteinization 257

13.3.1.4 Fermentation 259

13.3.1.5 Enzymatic Deacetylation 259

13.3.2 Applications of Chitin and Chitosan 259

13.4 Xanthan Gum 260

13.4.1 Xanthan Gum Production 260

13.4.2 Microbial Production 261

13.4.3 Applications of Xanthan Gum 261

13.5 Bacterial Cellulose 261

13.5.1 Biosynthetic Pathway for Cellulose Production 261

13.5.2 Cellulose Precursor 262

13.5.3 Microbial Source for Cellulose Production 262

13.5.4 Applications of Cellulose 263

13.6 Levan 263

13.6.1 Levan Producing Organism 264

13.6.2 Mechanism for Levan Biosynthesis 264

13.6.3 Strategies for Levan Production 265

13.6.4 Applications of Levan 265

13.7 Conclusions and Perspectives 266

Acknowledgments 266

References 266

14 Polysaccharides from Marine Microalgal Sources 278
Ratih Pangestuti, Evi Amelia Siahaan, Yanuariska Putra, and Puji Rahmadi

14.1 Introduction 278

14.2 Polysaccharides from Marine Microalgae 279

14.2.1 Subcritical Water Hydrolysis 280

14.2.2 Ultrasonic- Aided Extraction 281

14.2.3 Microwave- Assisted Extraction 282

14.2.4 Enzyme- Assisted Extraction 282

14.3 Optimization of Microalgae Culture Conditions 282

14.4 Bioactivities and Potential Health Benefits 285

14.4.1 Antiviral Activity 285

14.4.2 Antioxidant 286

14.4.3 Anticancer 287

14.4.4 Immunomodulatory 288

14.5 Conclusions and Perspectives 288

Acknowledgment 288

References 289

15 Microbial Production of Bioplastic: Current Status and Future Prospects 295
Karishma Seem

15.1 Introduction 295

15.2 General Structure of PHA 297

15.3 Physical Properties 298

15.4 Biodegradability of PHA 298

15.5 Biosynthesis of PHA 299

15.6 Challenges of Scaling Up of PHA Production on an Industrial Scale 300

15.6.1 Renewable Sources as Feedstock for PHA Production 300

15.6.1.1 Food Processing and Agricultural Industries Discharge 300

15.6.1.2 Glycerol 301

15.6.1.3 Agro- Industrial Oily Wastes 301

15.6.2 Cyanobacteria 302

15.6.3 Bacteria from Extreme Niches 303

15.6.3.1 Halophilic Bacteria 303

15.6.3.2 Thermophiles for PHA 304

15.6.3.3 Psycrophiles for PHA 304

15.7 Co- synthesis of PHA with Value- Added Products 304

15.8 Blends of PHA 305

15.9 Applications of PHA 306

15.9.1 Biomedical Applications 306

15.9.2 Soft Tissue Implants 307

15.9.3 Esophagus, Pericardial Patches 307

15.9.4 Heart Valve Tissue Engineering 307

15.9.5 Nerve Regeneration 308

15.9.6 Drug Delivery System 308

15.10 Conclusions and Perspectives 309

References 309

16 Microbial Enzymes for the Mineralization of Xenobiotic Compounds 319
Ankita Chatterjee, Pritha Chakraborty, and Jayanthi Abraham

16.1 Introduction 319

16.2 Major Pollutants and Their Removal with White- Rot Fungi 320

16.2.1 Pesticides 320

16.2.2 Polychlorinated Biphenyls 321

16.2.3 Polycyclic Aromatic Hydrocarbons 321

16.2.4 Synthetic Dyes 322

16.2.5 Synthetic Polymers 322

16.2.6 Phenolic Compounds 322

16.2.7 Petroleum Hydrocarbons 323

16.3 Enzyme System of White- Rot Fungi 323

16.3.1 Laccase 323

16.3.1.1 Mechanisms 327

16.3.2 Lignin Peroxidase 328

16.3.3 Manganese Peroxidase 329

16.3.3.1 Mechanism 329

16.3.4 Other Enzymes 330

16.4 Molecular Aspect 330

16.5 Conclusions and Perspectives 331

Acknowledgement 331

Compliance with Ethical Guidelines 332

References 332

17 Functional Oligosaccharides and Microbial Sources 337
SA Belorkar

17.1 Introduction 337

17.1.1 What Are Functional Foods? All You Need to Know 338

17.2 Inulin and Oligofructose: The Preliminary Functional Oligosaccharides 339

17.3 GRAS and FOSHU Status 339

17.4 Conventional and Upcoming Oligosaccharides 339

17.5 Microbes and Functional Oligosaccharides 340

17.6 Arabinoxylo- Oligosaccharides 340

17.7 Sources and Properties 341

17.8 Approaches for AXOS Production 341

17.9 Isomaltooligosaccharides 342

17.10 Sources and Properties 343

17.11 Production of IMO 344

17.12 Approaches to Improve IMO Production 344

17.13 Lactosucrose 345

17.14 Novel Approaches in Lactosucrose Preparation 347

17.15 Xylooligosaccharides 347

17.16 Occurrence and Properties 348

17.17 Approaches to Improve the Efficiency of XOS 349

17.18 Conclusions and Perspectives 349

References 350

18 Algal Biomass and Biofuel Production 357
Suman Sanju, Aditi Thakur, Pragati Misra, and Pradeep Kumar Shukla

18.1 Introduction 357

18.2 Biofuels 357

18.2.1 First-Generation Biofuels 358

18.2.2 Second-Generation Biofuels 358

18.2.3 Third-Generation Biofuels 359

18.3 Algae: The Biomass 359

18.4 Microalgae as Biofuel Biomass 360

18.5 Microalgae Culture Systems 362

18.5.1 Open Algal Systems 362

18.5.2 Closed Algal Systems 363

18.5.3 Hybrid Algal Systems 363

18.6 Microalgae Harvesting 364

18.7 Processing and Extraction of Components 364

18.8 Biofuel Conversion Processes 364

18.8.1 Transesterification 365

18.8.2 Biochemical Methods 366

18.8.2.1 Fermentation 366

18.8.2.2 Anaerobic Digestion 366

18.8.3 Thermochemical Conversions 367

18.8.3.1 Gasification 367

18.8.3.2 Pyrolysis 367

18.8.3.3 Liquefaction 368

18.8.4 Direct Combustion 368

18.9 Microalgal Biofuels 368

18.9.1 Biodiesel 368

18.9.2 Bioethanol 369

18.9.3 Biogas 370

18.9.4 Bio-Oil and Bio-Syngas 370

18.9.5 Biohydrogen 371

18.10 Conclusions and Perspectives 371

References 371

19 Microbial Source of Insect- Toxic Proteins 377
Tripti Yadav and Geetanjali Mishra

19.1 Introduction 377

19.2 Fungi 378

19.3 Bacteria 384

19.4 Virus 386

19.5 Conclusions and Perspectives 387

References 388

20 Recent Trends in Conventional and Nonconventional Bioprocessing 404
Saswata Goswami, Keyur Raval, Anjana, and Priyanka Bhat

20.1 Advances in Conventional Bioprocessing 404

20.1.1 The Stirred- Tank Bioreactor Systems 407

20.2 Nonconventional Bioprocessing 409

20.2.1 Wave Bioreactors 409

20.2.2 Orbital Shaken Bioreactors 410

20.2.3 Stirred Tank Bioreactors 411

20.3 Brief Note on the Recent Trends in Downstream Bioprocessing 413

20.4 Perfusion Culture for Bioprocess Intensification 413

20.5 Conclusions and Perspectives 416

References 416

Index 418

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 170 x 244 mm
Gewicht 992 g
Themenwelt Naturwissenschaften Biologie
ISBN-10 1-119-71724-8 / 1119717248
ISBN-13 978-1-119-71724-9 / 9781119717249
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von David Sadava; Jürgen Markl; David M. Hillis …

Buch (2019)
Springer Spektrum (Verlag)
109,99
was Mikroben, Tiere und Pflanzen eint und wie sie uns ernähren

von Florianne Koechlin

Buch | Softcover (2024)
Lenos (Verlag)
32,00