Epitaxial Design Optimizations for Increased Efficiency in GaAs-Based High Power Diode Lasers

(Autor)

Buch
136 Seiten
2021
Cuvillier Verlag
978-3-7369-7396-1 (ISBN)
46,68 inkl. MwSt
  • Keine Verlagsinformationen verfügbar
  • Artikel merken
This work presents progress in the root-cause analysis of power saturation mechanisms in continuous wave (CW) driven GaAs-based high-power broad area diode lasers operated at 935 nm. Target is to increase efficiency at high optical CW powers by epitaxial design.
The novel extreme triple asymmetric (ETAS) design was developed and patented within this work to equip diode lasers that use an extremely thin p-waveguide with a high modal gain. An iterative variation of diode lasers employing ETAS designs was used to experimentally clarify the impact of modal gain on the temperature dependence of internal differential quantum efficiency (IDQE) and optical loss. High modal gain leads to increased free carrier absorption from the active region. However, less power saturation is observed, which must then be attributed to an improved temperature sensitivity of the IDQE.
The effect of longitudinal spatial hole burning (LSHB) leads to above average non-linear carrier loss at the back facet of the device. At high CW currents the junction temperature rises. Therefore, not only the asymmetry of the carrier profile increases but also the average carrier density in order to compensate for the decreased material gain and increased threshold gain. This carrier non-pinning effect above threshold is found in this work to enhance the impact of LSHB already at low currents, leading to rapid degradation of IDQE with temperature.
This finding puts LSHB into a new context for CW-driven devices as it emphasizes the importance of low carrier densities at threshold. The carrier density was effectively reduced by applying the novel ETAS design. This enabled diode lasers to be realized that show minimized degradation of IDQE with temperature and therefore improved performance in CW operation.
Erscheinungsdatum
Reihe/Serie Innovationen mit Mikrowellen und Licht ; 62
Verlagsort Göttingen
Sprache englisch
Maße 148 x 210 mm
Themenwelt Naturwissenschaften Physik / Astronomie Festkörperphysik
Schlagworte Absorption Cross Sections • Absorptionsquerschnitte • AlGaAs • Band Edge Bending • Bandkantenbiegung • Bias Driven Carrier Leakage • Carrier Accumulation • Carrier Density • Carrier Escape • Carrier Loss • Carrier Non-Pinning • Cladding Layer • Confinement Factor • Continuous Wave • Dauerstrich • D-Factor • Differential Gain • Differentieller Gewinn • Diode Laser • Diode Laser Bar • Diode Laser Stack • Diodenlaser • Diodenlaserbarren • Diodenlaser-Stack • Disc Lasers • EDAS • Einfach Quantentopf • Epitaktisches Design • Epitaktische Struktur • Epitaxial Design • Epitaxial Structure • ETAS • Extrem doppelasymmetrische Struktur • Extrem dreifach asymmetrische Struktur • Extreme Double Asymmetric Structure • Extreme Triple Asymmetric Structure • Festkörperlaser • Free Carrier Absorption Loss • Freie Ladungsträger Verluste • GaAs • high efficiency • high power • Hocheffizient • Hochleistung • Hochleistungsdiodenlaser • InGaAs • Internal Differential Quantum Efficiency • Interne differentielle Quanteneffizienz • Ladungsträger Akkumulation • Ladungsträgeraustritt • Ladungsträgerdichte • Ladungsträger Non-Pinning • Ladungsträgerverluste • Laser • laser beam • Laserindustrie • Laser Industry • lasers • Laserstrahl • leakage currents • Leckströme • Leistungskonversionseffizienz • Leistungslimitierende Mechanismen • Leistungssättigung • Longitudinales räumliches Lochbrennen • Longitudinal Spatial Hole Burning • Mantelschicht • Materialbearbeitung • material gain • Materialgewinn • material processing • Mehrfach Quantentopf • metallorganische Gasphasenepitaxie • Metalorganic Vapor Phase Epitaxy • Modaler Gewinn • Modal Gain • Modeneinschluss Faktor • MOVPE • Multi Quantum Well • Optical Confinement • Optical Gain • optical loss • Optical Pumping • Optical Pumps • Optical waveguide • Optische Pumpen • Optischer Gewinn • Optischer Modeneinschluss • Optischer Wellenleiter • Optisches Pumpen • optische Verluste • power conversion efficiency • Power limiting Mechanisms • power saturation • Scheibenlaser • Schwellenladungsträgerdichte • Single Quantum Well • Solid state lasers • Stromgetriebene Ladungsträgerverluste • Thermal carrier Leakage • Thermal Rollover • Thermische Ladungsträgerverluste • Thermisches Überrollen • Threshold Carrier Density • Trumpf • Two-Photon Absorption • Vertical structure • vertikalstruktur • Zwei-Photon Absorption
ISBN-10 3-7369-7396-9 / 3736973969
ISBN-13 978-3-7369-7396-1 / 9783736973961
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Siegfried Hunklinger; Christian Enss

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
79,95

von Rudolf Gross; Achim Marx

Buch | Hardcover (2022)
De Gruyter Oldenbourg (Verlag)
79,95
Aufgaben und Lösungen

von Rudolf Gross; Achim Marx; Dietrich Einzel; Stephan Geprägs

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
39,95