Instanton Counting, Quantum Geometry and Algebra - Taro Kimura

Instanton Counting, Quantum Geometry and Algebra

(Autor)

Buch | Hardcover
XXIII, 285 Seiten
2021 | 1st ed. 2021
Springer International Publishing (Verlag)
978-3-030-76189-9 (ISBN)
149,79 inkl. MwSt

This book pedagogically describes recent developments in gauge theory, in particular four-dimensional N = 2 supersymmetric gauge theory, in relation to various fields in mathematics, including algebraic geometry, geometric representation theory, vertex operator algebras. The key concept is the instanton, which is a solution to the anti-self-dual Yang-Mills equation in four dimensions.



In the first part of the book, starting with the systematic description of the instanton, how to integrate out the instanton moduli space is explained together with the equivariant localization formula. It is then illustrated that this formalism is generalized to various situations, including quiver and fractional quiver gauge theory, supergroup gauge theory. The second part of the book is devoted to the algebraic geometric description of supersymmetric gauge theory, known as the Seiberg-Witten theory, together with string/M-theory point of view. Based on its relation to integrable systems, how to quantize such a geometric structure via the -deformation of gauge theory is addressed. The third part of the book focuses on the quantum algebraic structure of supersymmetric gauge theory. After introducing the free field realization of gauge theory, the underlying infinite dimensional algebraic structure is discussed with emphasis on the connection with representation theory of quiver, which leads to the notion of quiver W-algebra. It is then clarified that such a gauge theory construction of the algebra naturally gives rise to further affinization and elliptic deformation of W-algebra.

lt;p>Professor Taro Kimura is Maître de Conérences (Assistant Professor) working at Mathematical Physics group of Institut de Mathématiques de Bourgogne, Université Bourgogne Franche-Comté (UBFC), France. Before moving to UBFC, he has been Postdoctoral Researcher at RIKEN, CEA Saclay, then Research Associate, Junior Faculty Member, at Keio University. He obtained his Ph.D. degree in Theoretical/Mathematical Physics at the University of Tokyo in 2012 and then obtained the habilitation in 2020 at UBFC.

His research interest lies in theoretical physics/mathematical physics. In particular,  he is mainly exploring quantum field theory, and its mathematical aspects and applications.


Instanton Counting and Localization.- Quiver Gauge Theory.- Supergroup Gauge Theory.-  Seiberg-Witten Geometry.- Quantization of Geometry.- Operator Formalism of Gauge Theory.-  Quiver W-Algebra.- Quiver Elliptic W-algebra.



 

Erscheinungsdatum
Reihe/Serie Mathematical Physics Studies
Zusatzinfo XXIII, 285 p. 36 illus., 13 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 625 g
Themenwelt Mathematik / Informatik Mathematik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte BPS/CFT Correspondence • Instanton Counting and Localization • Operator Formalism of Gauge Theory • Quantization of Geometry • Quiver Elliptic W-algebra • Quiver Gauge Theory • Quiver W-algebra • Seiberg-Witten Geometry • Supergroup Gauge Theory
ISBN-10 3-030-76189-4 / 3030761894
ISBN-13 978-3-030-76189-9 / 9783030761899
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Markus Stephan; Bernd Bachert; Matevz Dular

Buch | Softcover (2024)
Wiley-VCH (Verlag)
20,00
Theoretische Physik I

von Peter Reineker; Michael Schulz; Beatrix M. Schulz …

Buch | Softcover (2021)
Wiley-VCH (Verlag)
54,90
Concepts and Applications

von Nouredine Zettili

Buch | Softcover (2022)
John Wiley & Sons Inc (Verlag)
45,90