Maximum Entropy and Bayesian Methods -

Maximum Entropy and Bayesian Methods

Proceedings of the Fifteenth International Workshop, Santa Fe, New Mexico, USA, 1995
Buch | Hardcover
480 Seiten
1996
Kluwer Academic Publishers (Verlag)
978-0-7923-4311-0 (ISBN)
269,64 inkl. MwSt
This volume contains the proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods, 1995, and looks at practical and fundamental applications of the area.
This volume contains the proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods, held in Sante Fe, New Mexico, USA, from July 31 to August 4, 1995. Maximum entropy and Bayesian methods are widely applied to statistical data analysis and scientific inference in the natural and social sciences, engineering and medicine. Practical applications include: parametric model fitting and model selection; ill-posed inverse problems; image reconstruction; signal processing; decision making; and spectrum estimation. Fundamental applications include the common foundations for statistical inference, statistical physics and information theory. Specific sessions during the workshop focused on time series analysis, machine learning, deformable geometric models, and data analysis of Monte Carlo simulations, as well as reviewing the relation between maximum entropy and information theory.

Reconstruction of the Probability Density Function Implicit in Option Prices from Incomplete and Noisy Data; R.J. Hawkins, et al. Model Selection and Parameter Estimation for Exponential Signals; A. Ramaswami, G.L. Bretthorst. Hierarchical Bayesian Time-Series Models; L.M. Berliner. Bayesian Time Series: Models and Computations for the Analysis of Time Series in the Physical Sciences; M. West. Maxent, Mathematics, and Information Theory; I. Csiszar. Bayesian Estimation of the Von Mises Concentration Parameter; D.L. Dowe, et al. A Characterization of the Dirichlet Distribution with Application to Learning Bayesian Networks; D. Geiger, D. Heckerman. The Bootstrap is Inconsistent with Probability Theory; D.H. Wolpert. Data-Driven Priors for Hyperparameters in Regularization; D. Keren, M. Werman. Mixture Modelling to Incorporate Meaningful Constraints into Learning; I. Tchoumatchenko, J.-G. Ganascia. Maximum Entropy (Maxent) Method in Expert Systems and Intelligent Control: New Possibilities and Limitations; V. Kreinovich, et al. The De Finetti Transform; S.J. Press. Continuum Models for Bayesian Image Matching; J.C. Gee, P.D. Peralta. Mechanical Models as Priors in Bayesian Tomographic Reconstruction; A. Rangarajan, et al. The Bayes Inference Engine; K.M. Hanson, G.S. Cunningham. A Full Bayesian Approach for Inverse Problems; A. Mohammad- Djafari. Pixon-Based Multiresolution Image Reconstruction and Quantification of Image Information Content; R.C. Puetter. Bayesian Multimodal Evidence Computation by Adaptive Tempering MCMC; M.-D. Wu, W.J. Fitzgerald. Bayesian Inference and the Analytic Continuation of Imaginary- Time Quantum Monte Carlo Data; J.E. Gubermatis, et al. Spectral Properties from Quantum Monte Carlo Data: A Consistent Approach; R. Preuss, et al. An Application of Maximum Entropy Method to Dynamical Correlation Functions at Zero Temperature; H. Pang, et al. Chebyshev Moment Problems: Maximum Entropy and Kernel Polynomial Methods; R.N. Silver, et al. Cluster Expansions and Iterative Scaling for Maximum-Entropy Language Models; J.D. Lafferty, B. Suhm. A Maxent Tomography Method for Estimating Fish Densities in a Commercial Fishery; S. Lizamore, et al. Toward Optimal Observer Performance of Detection and Discrimination Tasks on Reconstructions from Sparse Data; R.F. Wagner, et al. Entropies for Dissipative Fluids and Magnetofluids without Discretization; D. Montgomery. On the Importance of a Marginalization in Maximum Entropy; R. Fisher, et al. Quantum Mechanics as an Exotic Probability Theory; S. Youssef. Bayesian Parameter Estimation of Nuclear-Fusion Confinement Time Scaling Laws; V. Dose, et al. Hierarchical Segmentation of Range and Colour Images Based on Bayesian Decision Theory; P. Boulanger. Priors on Measures; J. Skilling, S. Sibisi. Determining Whether Two Data Sets are from the Same Distribution; D.H. Wolpert. Occam's Razor for Parametric Families and Priors on the Space of Distributions; (Part contents).

Reihe/Serie Fundamental Theories of Physics ; v. 79
Zusatzinfo Illustrations, ports.
Sprache englisch
Einbandart gebunden
Themenwelt Mathematik / Informatik Mathematik Wahrscheinlichkeit / Kombinatorik
Naturwissenschaften Physik / Astronomie
ISBN-10 0-7923-4311-5 / 0792343115
ISBN-13 978-0-7923-4311-0 / 9780792343110
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich

von Jim Sizemore; John Paul Mueller

Buch | Softcover (2024)
Wiley-VCH (Verlag)
28,00
Eine Einführung in die faszinierende Welt des Zufalls

von Norbert Henze

Buch | Softcover (2024)
Springer Spektrum (Verlag)
39,99