Development of Novel Bioelectrochemical Membrane Separation Technologies for Wastewater Treatment and Resource Recovery - Yunkun Wang

Development of Novel Bioelectrochemical Membrane Separation Technologies for Wastewater Treatment and Resource Recovery

(Autor)

Buch | Softcover
157 Seiten
2021 | 1st ed. 2020
Springer Verlag, Singapore
978-981-15-3080-7 (ISBN)
160,49 inkl. MwSt
The most commonly used biological wastewater treatment technologies still have serious technical-economical and sustainability-related limitations, due to their high energy requirements, poor effluent quality, and lack of energy and resource recovery processes. In this thesis, novel electrochemical membrane bioreactors (EMBRs), which take advantage of membrane separation and bioelectrochemical techniques, are developed for wastewater treatment and the simultaneous recovery of energy and resources. Above all, this innovative system holds great promise for the efficient wastewater treatment and energy recovery. It can potentially recover net energy from wastewater while at the same time harvesting high-quality effluent. The book also provides a proof-of-concept study showing that electrochemical control might offer a promising in-situ means of suppressing membrane fouling. Lastly, by integrating electrodialysis into EMBRs, phosphate separation and recovery are achieved. Hence, these new EMBR techniques provide viable alternatives for sustainable wastewater treatment and resource recovery. 

Dr. Yunkun Wang received his Ph.D. in Environmental Engineering from University of Science & Technology of China in 2014. He is currently an associate professor at the School of Environmental Science and Engineering, Shandong University, China, involved in developing membrane-based technologies for sustainable wastewater treatment. Originally trained as an environmentalist, Dr. Yunkun Wang adopts multidisciplinary approaches to tackle environmental problems, especially water pollution issues. His research interest lies in the development of novel membrane separation materials and processes for water treatment and resources recovery, with over 40 research papers published, including Environmental Science & Technology, Water Research and Science Advances. He was awarded by Chinese Academy of Sciences with the Excellent Doctoral Dissertation.

Introduction.- Research background.- Intermittently aerated membrane bioreactor technologies for nutrients removal and phosphate recovery.- Anaerobic hybrid membrane bioreactor technology for refractory organic pollutant removal.- Electrochemical membrane bioreactor technologies for sustainable wastewater treatment.- In-situ utilization of generated electricity to mitigate membrane fouling.- In-situ utilization of generated electricity for nutrient recovery.- Conclusion.- acknowledgement.- Academic papers and patents during doctoral studies.

Erscheinungsdatum
Reihe/Serie Springer Theses
Zusatzinfo 49 Illustrations, color; 20 Illustrations, black and white; XIV, 157 p. 69 illus., 49 illus. in color.
Verlagsort Singapore
Sprache englisch
Maße 155 x 235 mm
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Chemie Technische Chemie
Naturwissenschaften Geowissenschaften
Technik Umwelttechnik / Biotechnologie
ISBN-10 981-15-3080-7 / 9811530807
ISBN-13 978-981-15-3080-7 / 9789811530807
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
eine Einführung

von Harald Zepp

Buch | Softcover (2023)
UTB (Verlag)
34,00