Tauberian Theory of Wave Fronts in Linear Hereditary Elasticity - Alexander A. Lokshin

Tauberian Theory of Wave Fronts in Linear Hereditary Elasticity (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
XI, 136 Seiten
Springer Singapore (Verlag)
978-981-15-8578-4 (ISBN)
Systemvoraussetzungen
53,49 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
The objective of this book is to construct a rigorous mathematical approach to linear hereditary problems of wave propagation theory and demonstrate the efficiency of mathematical theorems in hereditary mechanics. By using both real end complex Tauberian techniques for the Laplace transform, a classification of near-front asymptotics of solutions to considered equations is given-depending on the singularity character of the memory function. The book goes on to derive the description of the behavior of these solutions and demonstrates the importance of nonlinear Laplace transform in linear hereditary elasticity. This book is of undeniable value to researchers working in areas of mathematical physics and related fields.

ALEXANDER A. LOKSHIN is Professor of Mathematics at the Faculty of Primary Education, Moscow Pedagogical University, Russia, since 1999. He completed his graduation in differential equations in 1973 from the Faculty of Mechanics and Mathematics, Moscow State University, Russia. Professor Lokshin defended his thesis on 'On lacunas and weak lacunas of hyperbolic and quasi-hyperbolic equations' in 1976 at Moscow State University, Russia. Later, he defended his doctoral dissertation on 'Waves in hereditarily elastic media' at the Institute of Problems of Mechanics, USSR Academy of Sciences, Russia, in 1985. He served as a junior research fellow at the Moscow Institute of Electronic Engineering and had also worked as a scientific editor for the Moscow University Press, Russia. Coauthor of The Mathematical Theory of Wave Propagation in Media with Memory and Nonlinear Waves in Inhomogeneous and Hereditary Media, Prof. Lokshin has also published several books proposing a visual and at the same time mathematically rigorous justification of the four arithmetic algorithms.


The objective of this book is to construct a rigorous mathematical approach to linear hereditary problems of wave propagation theory and demonstrate the efficiency of mathematical theorems in hereditary mechanics. By using both real end complex Tauberian techniques for the Laplace transform, a classification of near-front asymptotics of solutions to considered equations is given-depending on the singularity character of the memory function. The book goes on to derive the description of the behavior of these solutions and demonstrates the importance of nonlinear Laplace transform in linear hereditary elasticity. This book is of undeniable value to researchers working in areas of mathematical physics and related fields.
Erscheint lt. Verlag 21.10.2020
Zusatzinfo XI, 136 p. 10 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Analysis
Naturwissenschaften Physik / Astronomie Theoretische Physik
Technik Bauwesen
Technik Maschinenbau
Schlagworte Elasticity • Fourier transform • Laplace transform • Paley-Wiener theorem • tauberian theorem • viscoelasticity • wave-front asymptotics
ISBN-10 981-15-8578-4 / 9811585784
ISBN-13 978-981-15-8578-4 / 9789811585784
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich