Für diesen Artikel ist leider kein Bild verfügbar.

Petroleum Refining Design and Applications Handbook, Volume 3

Mechanical Separations, Distillation, Packed Towers, Liquid-Liquid Extraction, Process Safety Incidents

A. Kayode Coker (Herausgeber)

Buch | Hardcover
1216 Seiten
2022
Wiley-Scrivener (Verlag)
978-1-119-79486-8 (ISBN)
296,34 inkl. MwSt
PETROLEUM REFINING The third volume of a multi-volume set of the most comprehensive and up-to-date coverage of the advances of petroleum refining designs and applications, written by one of the world’s most well-known process engineers, this is a must-have for any chemical, process, or petroleum engineer.

This volume continues the most up-to-date and comprehensive coverage of the most significant and recent changes to petroleum refining, presenting the state-of-the-art to the engineer, scientist, or student.

This book provides the design of process equipment, such as vessels for the separation of two-phase and three-phase fluids, using Excel spreadsheets, and extensive process safety investigations of refinery incidents, distillation, distillation sequencing, and dividing wall columns. It also covers multicomponent distillation, packed towers, liquid-liquid extraction using UniSim design software, and process safety incidents involving these equipment items and pertinent industrial case studies.

Useful as a textbook, this is also an excellent, handy go-to reference for the veteran engineer, a volume no chemical or process engineering library should be without. Written by one of the world’s foremost authorities, this book sets the standard for the industry and is an integral part of the petroleum refining renaissance. It is truly a must-have for any practicing engineer or student in this area.

This groundbreaking new volume:



Assists engineers in rapidly analyzing problems and finding effective design methods and select mechanical specifications
Provides improved design manuals to methods and proven fundamentals of process design with related data and charts
Covers a complete range of basic day–to–day petroleum refining operations topics with new materials on significant industry changes
Includes extensive Excel spreadsheets for the design of process vessels for mechanical separation of two-phase and three-phase fluids
Provides UniSim ®-based case studies for enabling simulation of key processes outlined in the book
Helps achieve optimum operations and process conditions and shows how to translate design fundamentals into mechanical equipment specifications
Has a related website that includes computer applications along with spreadsheets and concise applied process design flow charts and process data sheets
Provides various case studies of process safety incidents in refineries and means of mitigating these from investigations by the US Chemical Safety Board
Includes a vast Glossary of Petroleum and Technical Terminology

Kayode Coker PhD, is Engineering Consultant for AKC Technology, an Honorary Research Fellow at the University of Wolverhampton, U.K., a former Engineering Coordinator at Saudi Aramco Shell Refinery Company and Chairman of the department of Chemical Engineering Technology at Jubail Industrial College, Saudi Arabia. He has been a chartered chemical engineer for more than 30 years. He is a Fellow of the Institution of Chemical Engineers, U.K. and a senior member of the American Institute of Chemical Engineers. He holds a B.Sc. honors degree in Chemical Engineering, a Master of Science degree in Process Analysis and Development and Ph.D. in Chemical Engineering, all from Aston University, Birmingham, U.K. and a Teacher’s Certificate in Education at the University of London, U.K. He has directed and conducted short courses extensively throughout the world and has been a lecturer at the university level. His articles have been published in several international journals. He is an author of five books in chemical engineering, a contributor to the Encyclopedia of Chemical Processing and Design. Vol 61. He was named as one of the International Biographical Centre’s Leading Engineers of the World for 2008. Also, he is a member of International Who’s Who of ProfessionalsTM and Madison Who’s Who in the U.S.

Preface xxii

Acknowledgments xxiv

18 Mechanical Separations 1

18.1 Particle Size 1

18.2 Preliminary Separator Selection 6

18.3 Gravity Settlers 16

18.4 Terminal Velocity 19

18.5 Alternate Terminal Velocity Calculation 24

18.6 American Petroleum Institute’s Oil Field Separators 28

18.7 Liquid/Liquid, Liquid/Solid Gravity Separations, Decanters, and Sedimentation Equipment 28

18.8 Horizontal Gravity Settlers or Decanters, Liquid/Liquid 29

18.9 Modified Method of Happel and Jordan 33

18.10 Decanter 36

18.11 Impingement Separators 42

18.12 Centrifugal Separators 68

References 246

19 Distillation 249

19.1 Distillation Process Performance 249

19.2 Equilibrium Basic Considerations 252

19.3 Vapor–Liquid Equilibria 253

19.4 Activity Coefficients 262

19.5 Excess Gibbs Energy—GE 263

19.6 K-Value 264

19.7 Ideal Systems 266

19.8 Henry’s Law 268

19.9 K-Factor Hydrocarbon Equilibrium Charts 269

19.10 Non-Ideal Systems 277

19.11 Thermodynamic Simulation Software Programs 280

19.12 Vapor Pressure 283

19.13 Azeotropic Mixtures 296

19.14 Bubble Point of Liquid Mixture 311

19.15 Equilibrium Flash Computations 316

19.16 Degrees of Freedom 325

19.17 UniSim (Honeywell) Software 326

19.18 Binary System Material Balance: Constant Molal Overflow Tray to Tray 333

19.19 Determination of Distillation Operating Pressures 343

19.20 Condenser Types From a Distillation Column 344

19.21 Effect of Thermal Condition of Feed 348

19.22 Effect of Total Reflux, Minimum Number of Plates in a Distillation Column 352

19.23 Relative Volatility α Separating Factor in a Vapor–Liquid System 355

19.24 Rapid Estimation of Relative Volatility 366

19.25 Estimation of Relative Volatilities Under 1.25 (α < 125) by Ryan 367

19.26 Estimation of Minimum Reflux Ratio: Infinite Plates 368

19.27 Calculation of Number of Theoretical Trays at Actual Reflux 370

19.28 Identification of “Pinch Conditions” on an x-y Diagram at High Pressure 373

19.29 Distillation Column Design 376

19.30 Simulation of a Fractionating Column 378

19.31 Determination of Number of Theoretical Plates in Fractionating Columns by the Smoker Equations at Constant Relative Volatility (α = constant) 396

19.32 The Jafarey, Douglas, and McAvoy Equation: Design and Control 401

19.33 Number of Theoretical Trays at Actual Reflux 411

19.34 Estimating Tray Efficiency in a Distillation Column 413

19.35 Steam Distillation 422

19.36 Distillation with Heat Balance of Component Mixture 432

19.37 Multicomponent Distillation 453

19.38 Scheibel–Montross Empirical: Adjacent Key Systems: Constant or Variable Volatility 494

19.39 Minimum Number of Trays: Total Reflux−Constant Volatility 497

19.40 Smith–Brinkley (SB) Method 512

19.41 Retrofit Design of Distillation Columns 514

19.42 Tray-by-Tray for Multicomponent Mixtures 517

19.43 Tray-by-Tray Calculation of a Multicomponent Mixture Using a Digital Computer 531

19.44 Thermal Condition of Feed 532

19.45 Minimum Reflux-Underwood Method, Determination of αAvg for Multicomponent Mixture 533

19.46 Heat Balance-Adjacent Key Systems with Sharp Separations, Constant Molal Overflow 539

19.47 Stripping Volatile Organic Chemicals (VOC) from Water with Air 542

19.48 Rigorous Plate-to-Plate Calculation (Sorel Method) 547

19.49 Multiple Feeds and Side Streams for a Binary Mixture 551

19.50 Chou and Yaws Method 558

19.51 Optimum Reflux Ratio and Optimum Number of Trays Calculations 561

19.52 Tower Sizing for Valve Trays 574

19.53 Troubleshooting, Predictive Maintenance, and Controls for Distillation Columns 589

19.54 Distillation Sequencing with Columns Having More than Two Products 622

19.55 Heat Integration of Distillation Columns 630

19.56 Capital Cost Considerations for Distillation Columns 634

19.57 The Pinch Design Approach to Inventing a Network 644

19.58 Appropriate Placement and Integration of Distillation Columns 644

19.59 Heat Integration of Distillation Columns: Summary 645

19.60 Common Installation Errors in Distillation Columns 645

References 693

Bibliography 699

20 Packed Towers and Liquid–Liquid Extraction 703

20.1 Shell 707

20.2 Random Packing 708

20.3 Packing Supports 709

20.4 Liquid Distribution 734

20.5 Packing Installation 739

20.6 Contacting Efficiency, Expressed as Kga, HTU, HETP 755

20.7 Packing Size 756

20.8 Pressure Drop 757

20.9 Materials of Construction 759

20.10 Particle versus Compact Preformed Structured Packings 759

20.11 Minimum Liquid Wetting Rates 760

20.12 Loading Point Loading Region 761

20.13 Flooding Point 772

20.14 Foaming Liquid Systems 773

20.15 Surface Tension Effects 773

20.16 Packing Factors 773

20.17 Recommended Design Capacity and Pressure Drop 776

20.18 Pressure Drop Design Criteria and Guide: Random Packings Only 778

20.19 Effects of Physical Properties 781

20.20 Performance Comparisons 784

20.21 Capacity Basis for Design 784

20.22 Proprietary Random Packing Design Guides 796

20.23 Liquid Hold-Up 822

20.24 Packing Wetted Area 824

20.25 Effective Interfacial Area 826

20.26 Entrainment from Packing Surface 827

20.27 Structured Packing 830

20.28 Structured Packing: Technical Performance Features 849

20.29 New Generalized Pressure Drop Correlation Charts 855

20.30 Mass and Heat Transfer in Packed Tower 855

20.31 Number of Transfer Units, NOG, NOL 856

20.32 Gas and Liquid-Phase Coefficients, kG and kL 868

20.33 Height of a Transfer Unit, HOG, HOL, HTU 869

20.34 Distillation in Packed Towers 874

20.35 Liquid–Liquid Extraction 893

20.36 Process Parameters 908

20.37 Solvents Selection for the Extraction Unit 911

20.38 Phenol Extraction Process of Lubes 913

20.39 Furfural Extraction Process 914

20.40 Dispersed-Phase Droplet Size 916

20.41 Theory 920

20.42 Nernst’s Distribution Law 921

20.43 Tie Lines 921

20.44 Phase Diagrams 929

20.45 Countercurrent Extractors 931

20.46 Extraction Equipment 935

References 956

Glossary 961

Appendix D 1087

Appendix F 1163

About the Author 1179

Index 1181

Erscheinungsdatum
Sprache englisch
Maße 10 x 10 mm
Gewicht 454 g
Themenwelt Naturwissenschaften Chemie Technische Chemie
Technik Elektrotechnik / Energietechnik
ISBN-10 1-119-79486-2 / 1119794862
ISBN-13 978-1-119-79486-8 / 9781119794868
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
erneuerbare Energien und Speichertechnologien für die Energiewende

von Jürgen Karl

Buch | Softcover (2023)
De Gruyter Oldenbourg (Verlag)
69,95
Daten, Formeln, Normen, vergleichende Betrachtungen

von Walter Bierwerth

Buch | Softcover (2024)
Europa-Lehrmittel (Verlag)
38,90

von Manfred Baerns; Arno Behr; Axel Brehm; Jürgen Gmehling …

Buch | Hardcover (2023)
Wiley-VCH (Verlag)
94,90