Si Detectors and Characterization for HEP and Photon Science Experiment - Ajay Kumar Srivastava

Si Detectors and Characterization for HEP and Photon Science Experiment

How to Design Detectors by TCAD Simulation
Buch | Softcover
XVII, 183 Seiten
2020 | 1st ed. 2019
Springer International Publishing (Verlag)
978-3-030-19533-5 (ISBN)
96,29 inkl. MwSt

This book reviews the HL-LHC experiments and the fourth-generation photon science experiments, discussing the latest radiation hardening techniques, optimization of device & process parameters using TCAD  simulation tools, and the experimental characterization required to develop rad-hard Si detectors for x-ray induced surface damage and bulk damage by hadronic irradiation.

Consisting of eleven chapters, it introduces various types of strip and pixel detector designs for the current upgrade, radiation, and dynamic range requirement of the experiments, and presents an overview of radiation detectors, especially Si detectors. It also describes the design of pixel detectors, experiments and characterization of Si detectors.

The book is intended for researchers and master's level students with an understanding of radiation detector physics. It provides a concept that uses TCAD simulation to optimize the electrical performance of the devices used in the harsh radiation environment of the colliders and at XFEL.


lt;p>Ajay Srivastava received his Ph.D. degree in Experimental High Energy Physics "Development of Si strip detector for the ECAL of the CMS Experiment at CERN, Geneva" at the Department of Physics, University of Delhi and Helsinki Institute of Physics, University of Helsinki, Finland. Thereafter, he worked as a Postdoctoral fellow at the Institute for Experimental Physics, University of Hamburg on two prestigious projects in Germany DESY with Professor Dr. Robert Klanner at DESY; "short strip p+n detector for inner tracking of CMS tracker upgrade"  and " x-ray p+n pixel detector for the European XFEL". He was a visiting scientist at CERN, Geneva from (2008-2010). He then did a second postdoctoral work "development of DSSD for Belle2" at the Tata Institute of Fundamental Research (TIFR), Mumbai with Prof. Tariq Aziz. In 2012, he worked as a Senior Scientist at FEI Company (now Thermo Fisher Scientific Instruments), USA. 

Ajay is currently a full Professor (Physics) at Chandigarh University involved in the research & development of p+n strip detectors for the phase-2 upgrade of the CMS tracker upgrade for the HL-LHC (2026) and x ray p+n pixel detector for the next generation photon science experiments. He has received several awards, fellowships and honors, such as a CIMO Fellow, UGC, New Delhi, DST (RA, Scientist), Govt. India, Industrial Resident, IMEC, Belgium, DAE RA-3 Honorarium, TIFR, Mumbai, just to mention a few. 

His research is published in more than 73 international peer reviewed research Journals. He is a referee  international journals and an editorial member of Medcrave, USA (OAJNP) & worked in the International European Experiments (CMS CERN, CEC CMS) & CERN RD50 Collaborations.

 

Development OF Si DETECTORS FOR THE CMS LHC Experiments.- Physics and Technology of Si  Detectors.-Performance of MCz Si Material for p+nn+ and n+pp+ Si Sensor Design: Status and Development for HL-LHC: Status and Development for HL-LHC.-  Development OF RADIATION HARD PIXEL DETECTORS FOR THE EUROPEAN XFEL.- T-CAD Simulation for the designing of detectors.- Development of Radiation Hard p+n Si Pixel Sensors for the European XFEL.- Analysis & Optimal Design of Radiation Hard p+n Si Pixel Detector for the Next generation Photon Science Experiments.- CapacitanceS in p+n silicon pixel sensors using 3-D TCAD simulation approach.-CHARACTERIZATION OF SI DETECTORS.- Analysis and TCAD Simulation for C/V, and G/V Electrical Characteristics of Gated Controlled Diodes for the AGIPD of the EuXFEL.- Si Detector for HEP and Photon Science Experiments: How to Design Detectors by TCAD Simulation.- Appendices.

Erscheinungsdatum
Zusatzinfo XVII, 183 p. 106 illus., 77 illus. in color.
Verlagsort Cham
Sprache englisch
Maße 155 x 235 mm
Gewicht 320 g
Themenwelt Naturwissenschaften Physik / Astronomie Atom- / Kern- / Molekularphysik
Naturwissenschaften Physik / Astronomie Hochenergiephysik / Teilchenphysik
Schlagworte CERN RD50 collaboration • CMS detector • designing pixel detectors • High Luminosity Large Hadron Collider experiments • high precision radiation hard detectors • LHC • pixel sensors • semiconductor radiation detectors • Si pixel detector • surface radiation design • TCAD
ISBN-10 3-030-19533-3 / 3030195333
ISBN-13 978-3-030-19533-5 / 9783030195335
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Grundlagen und Anwendungen

von Reinhold Kleiner; Werner Buckel

Buch | Softcover (2024)
Wiley-VCH (Verlag)
79,90