Elliptic Quantum Groups - Hitoshi Konno

Elliptic Quantum Groups (eBook)

Representations and Related Geometry

(Autor)

eBook Download: PDF
2020 | 1st ed. 2020
XIII, 131 Seiten
Springer Singapore (Verlag)
978-981-15-7387-3 (ISBN)
Systemvoraussetzungen
69,54 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This is the first book on elliptic quantum groups, i.e., quantum groups associated to elliptic solutions of the Yang-Baxter equation. Based on research by the author and his collaborators, the book presents a comprehensive survey on the subject including a brief history of formulations and applications, a detailed formulation of the elliptic quantum group in the Drinfeld realization,  explicit  construction of both finite and infinite-dimensional representations, and  a construction of the vertex operators as intertwining operators of these representations. The vertex operators are important objects in representation theory of quantum groups.  In this book, they are used to derive the elliptic q-KZ equations and their elliptic hypergeometric integral solutions. In particular, the so-called elliptic weight functions appear in such solutions.  The author's recent study showed that these elliptic weight functions are identified with Okounkov's elliptic stable envelopes for certain equivariant elliptic cohomology and play an important role to construct geometric representations of elliptic quantum groups. Okounkov's  geometric approach to quantum integrable systems is a rapidly growing topic in mathematical physics related to the Bethe ansatz, the Alday-Gaiotto-Tachikawa correspondence between 4D SUSY gauge theories and the CFT's, and  the Nekrasov-Shatashvili  correspondences between quantum integrable systems and quantum cohomology. To invite the reader to such topics is one of the aims of this book.

This is the first book on elliptic quantum groups, i.e., quantum groups associated to elliptic solutions of the Yang-Baxter equation. Based on research by the author and his collaborators, the book presents a comprehensive survey on the subject including a brief history of formulations and applications, a detailed formulation of the elliptic quantum group in the Drinfeld realization,  explicit  construction of both finite and infinite-dimensional representations, and  a construction of the vertex operators as intertwining operators of these representations. The vertex operators are important objects in representation theory of quantum groups.  In this book, they are used to derive the elliptic q-KZ equations and their elliptic hypergeometric integral solutions. In particular, the so-called elliptic weight functions appear in such solutions.  The author's recent study showed that these elliptic weight functions are identified with Okounkov's elliptic stableenvelopes for certain equivariant elliptic cohomology and play an important role to construct geometric representations of elliptic quantum groups. Okounkov's  geometric approach to quantum integrable systems is a rapidly growing topic in mathematical physics related to the Bethe ansatz, the Alday-Gaiotto-Tachikawa correspondence between 4D SUSY gauge theories and the CFT's, and  the Nekrasov-Shatashvili  correspondences between quantum integrable systems and quantum cohomology. To invite the reader to such topics is one of the aims of this book.
Erscheint lt. Verlag 14.9.2020
Reihe/Serie SpringerBriefs in Mathematical Physics
SpringerBriefs in Mathematical Physics
SpringerBriefs in Physics
Zusatzinfo XIII, 131 p. 3 illus.
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Angewandte Mathematik
Naturwissenschaften Physik / Astronomie Theoretische Physik
Schlagworte Elliptic quantum groups • Elliptic stable envelopes • q-KZ equations • Quantum Integrable Systems • Vertex operators
ISBN-10 981-15-7387-5 / 9811573875
ISBN-13 978-981-15-7387-3 / 9789811573873
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 2,0 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich