Modal View of Atmospheric Variability
Springer International Publishing (Verlag)
978-3-030-60962-7 (ISBN)
This book reviews the theory and applications of the normal-mode functions in numerical weather prediction and weather and climate dynamics. The normal-mode functions, the eigensolutions of the linearized primitive equations describing the evolution of atmospheric winds and mass variables, have been used for a long time. They have played an important role in the development of data assimilation schemes and the initialization of numerical weather prediction models. Chapters also present how the normal modes can be applied to many theoretical and numerical problems in the atmospheric sciences, such as equatorial wave dynamics, baroclinic instability, energy transfers, and predictability across scales.
lt;p>Nedjeljka Zagar is a professor of meteorology at University of Ljubljana (University of Hamburg). Her research covers topics in atmospheric dynamics and numerical weather prediction, especially tropical aspects. She has been using the normal-mode functions for data assimilation modelling and for quantification of atmospheric variability across many spatio-temporal scales with focus on unbalanced circulation.
Joseph Tribbia is a senior scientist at the National Center for Atmospheric Research (NCAR) and Head of its Atmospheric Modeling and Predictability Section in the Climate and Global Dynamics Division. He received a Bachelor of Science in Physics from the Illinois Institute of Technology in 1971, and a masters and doctoral degree in Atmospheric Science from the University of Michigan. He has been at NCAR since 1978 and his work has focused on the numerical simulation of the atmosphere and geophysically relevant flows. His journal publications include works on the application of dynamical systems theory in atmospheric dynamics, the problems of atmospheric data analysis and numerical weather prediction, atmospheric predictability and the prediction of forecast reliability, the simulation and prediction of El Nino/Southern Oscillation and decadal climate projections.
3D Normal Mode Functions (NMFs) Of a Global Baroclinic Atmospheric Model.- Normal Mode Functions and Initialization.- Normal-Mode Functions and Atmospheric Data Assimilation.- 3D Modal Variability and Energy Transformations On The Sphere.- Generalization of Baroclinic Instability and Rossby Wave Saturation Theory.- Applications to Predictions And Climate Studies.
Erscheinungsdatum | 30.12.2020 |
---|---|
Reihe/Serie | Mathematics of Planet Earth |
Zusatzinfo | XIII, 318 p. 114 illus., 50 illus. in color. |
Verlagsort | Cham |
Sprache | englisch |
Maße | 155 x 235 mm |
Gewicht | 664 g |
Themenwelt | Mathematik / Informatik ► Mathematik |
Naturwissenschaften ► Physik / Astronomie ► Theoretische Physik | |
Schlagworte | Atmospheric variability • energy spectra • Inertia-Gravity Waves • normal-mode functions • numerical model initialization • Tropical Circulation • unbalanced circulation • weather prediction |
ISBN-10 | 3-030-60962-6 / 3030609626 |
ISBN-13 | 978-3-030-60962-7 / 9783030609627 |
Zustand | Neuware |
Haben Sie eine Frage zum Produkt? |
aus dem Bereich