The Moduli Space of N=1 Superspheres with Tubes and the Sewing Operation

The Moduli Space of N=1 Superspheres with Tubes and the Sewing Operation

Buch | Softcover
2003
American Mathematical Society (Verlag)
978-0-8218-3260-8 (ISBN)
75,95 inkl. MwSt
  • Titel ist leider vergriffen;
    keine Neuauflage
  • Artikel merken
Within the framework of complex supergeometry and motivated by two-dimensional genus-zero holomorphic $N = 1$ superconformal field theory, this book defines the moduli space of $N=1$ genus-zero super-Riemann surfaces with oriented and ordered half-infinite tubes, modulo superconformal equivalence.
Within the framework of complex supergeometry and motivated by two-dimensional genus-zero holomorphic $N = 1$ superconformal field theory, we define the moduli space of $N=1$ genus-zero super-Riemann surfaces with oriented and ordered half-infinite tubes, modulo superconformal equivalence. We define a sewing operation on this moduli space which gives rise to the sewing equation and normalization and boundary conditions. To solve this equation, we develop a formal theory of infinitesimal $N = 1$ superconformal transformations based on a representation of the $N=1$ Neveu-Schwarz algebra in terms of superderivations. We solve a formal version of the sewing equation by proving an identity for certain exponentials of superderivations involving infinitely many formal variables.We use these formal results to give a reformulation of the moduli space, a more detailed description of the sewing operation, and an explicit formula for obtaining a canonical supersphere with tubes from the sewing together of two canonical superspheres with tubes. We give some specific examples of sewings, two of which give geometric analogues of associativity for an $N=1$ Neveu-Schwarz vertex operator superalgebra. We study a certain linear functional in the supermeromorphic tangent space at the identity of the moduli space of superspheres with $1 + 1$ tubes (one outgoing tube and one incoming tube) which is associated to the $N=1$ Neveu-Schwarz element in an $N=1$ Neveu-Schwarz vertex operator superalgebra.We prove the analyticity and convergence of the infinite series arising from the sewing operation. Finally, we define a bracket on the supermeromorphic tangent space at the identity of the moduli space of superspheres with $1+1$ tubes and show that this gives a representation of the $N=1$ Neveu-Schwarz algebra with central charge zero.

Introduction An introduction to the moduli space of $N=1$ superspheres with tubes and the sewing operation A formal algebraic study of the sewing operation An analytic study of the sewing operation Bibliography.

Erscheint lt. Verlag 1.12.2003
Reihe/Serie Memoirs of the American Mathematical Society
Zusatzinfo bibliography
Verlagsort Providence
Sprache englisch
Themenwelt Mathematik / Informatik Mathematik Algebra
Mathematik / Informatik Mathematik Analysis
Mathematik / Informatik Mathematik Angewandte Mathematik
Mathematik / Informatik Mathematik Geometrie / Topologie
Naturwissenschaften Physik / Astronomie Quantenphysik
ISBN-10 0-8218-3260-3 / 0821832603
ISBN-13 978-0-8218-3260-8 / 9780821832608
Zustand Neuware
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich