Analytical Techniques in Forensic Science -

Analytical Techniques in Forensic Science

Buch | Hardcover
464 Seiten
2021
John Wiley & Sons Inc (Verlag)
978-1-119-97828-2 (ISBN)
143,33 inkl. MwSt
An in-depth text that explores the interface between analytical chemistry and trace evidence

Analytical Techniques in Forensic Science is a comprehensive guide written in accessible terms that examines the interface between analytical chemistry and trace evidence in forensic science. With contributions from noted experts on the topic, the text features a detailed introduction analysis in forensic science and then subsequent chapters explore the laboratory techniques grouped by shared operating principles. For each technique, the authors incorporate specific theory, application to forensic analytics, interpretation, forensic specific developments, and illustrative case studies.

Forensic techniques covered include UV-Vis and vibrational spectroscopy, mass spectrometry and gas and liquid chromatography. The applications reviewed include evidence types such as fibers, paint, drugs and explosives. The authors highlight data collection, subsequent analysis, what information has been obtained and what this means in the context of a case. The text shows how analytical chemistry and trace evidence can problem solve the nature of much of forensic analysis. This important text:



Puts the focus on trace evidence and analytical science
Contains case studies that illustrate theory in practice
Includes contributions from experts on the topics of instrumentation, theory, and case examples
Explores novel and future applications for analytical techniques

Written for undergraduate and graduate students in forensic chemistry and forensic practitioners and researchers, Analytical Techniques in Forensic Science offers a text that bridges the gap between introductory textbooks and professional level literature.

ROSALIND WOLSTENHOLME, BSC, MSC, PhD, is a senior lecturer in analytical science in the Department of Biosciences and Chemistry, Sheffield Hallam University, UK. SUE JICKELLS, BSC, MSC, PhD, is a retired analytical chemist, formerly at the University of East Anglia and King's College London. SHARI FORBES, BSC, PhD, is a forensic scientist and researcher with the Department of Chemistry, Biochemistry and Physics, University of Quebec Trois-Rivières, Canada.

List of Contributors xvii

Preface xix

Acknowledgements xxi

Part I Preparing for Analysis 1

1 Introduction to Forensic Science 3
Sue Jickells, Rosalind Wolstenholme and Shari Forbes

1.1 Forensic Science 3

1.2 The Forensic Process 6

1.2.1 Forensic Principles and the Crime Scene 6

1.2.2 Preparatory Issues in Laboratory Analysis 11

1.2.3 Interpretation of Forensic Evidence 13

1.2.3.1 The Expert Witness and Interpretation 14

1.2.3.2 Evidential Value 15

1.2.3.3 Statistical Interpretation 18

1.2.3.4 Bayesian Statistics 20

1.3 Judicial Systems 22

1.3.1 Criminal vs. Civil Law 22

1.3.2 Adversarial vs. Inquisitorial System 24

1.3.3 Rules of Evidence 25

1.3.3.1 Admissibility of Evidence 25

1.3.4 Types of Evidence 26

1.3.5 Opinion and Expert Testimony 28

1.3.5.1 Admissibility of Scientific and Technical Evidence 28

1.4 The Role of Analytical Chemistry in Forensic Science 30

1.4.1 Techniques Used for Chemical Analysis 31

References 32

2 Analytical Methodology and Experimental Design 35
Florian Wulfert and Rosalind Wolstenholme

2.1 Scientific Method 35

2.2 What DoWe Mean by Analysis? 36

2.3 The Stages of Analysis 36

2.3.1 Quantification 37

2.3.1.1 External Standards 37

2.3.1.2 Internal Standards 38

2.3.1.3 Standard Addition 38

2.4 Analysis Development 39

2.4.1 Error Estimation 39

2.4.2 Quality Assurance and Quality Control 40

2.4.3 Method Development and Experimental Designs 41

2.4.4 Selecting Critical Variables with Factorial Designs 42

2.4.4.1 Categorical Variables 43

2.4.4.2 Reduced Designs 44

2.4.4.3 Final Practical Experimental Considerations 44

2.4.4.4 Deciding on Significance 44

2.4.4.5 Interpretation 45

2.4.5 Modelling the Significant Variables Using Response Surface Designs 46

2.4.5.1 Sparse Response Surface Designs 48

2.4.5.2 Analysing Response Surface Models 48

2.4.5.3 Validation 49

2.4.5.4 Optimisation 49

3 Presumptive Testing 51
Rosalind Wolstenholme and Shari Forbes

3.1 Introduction 51

3.2 Drugs 52

3.2.1 Drugs Seizure Sampling 52

3.2.2 Major Drug Classes 52

3.2.2.1 Marijuana 52

3.2.2.2 Opioids, Cocaine, and Amphetamines 53

3.2.2.3 Barbiturates and Benzodiazepines 53

3.2.2.4 LSD 53

3.2.2.5 New Psychoactive Substances 55

3.2.3 Presumptive Tests for Drugs 56

3.2.3.1 Colour Tests 56

3.2.3.2 Thin Layer Chromatography 56

3.2.3.3 Microcrystal Tests 56

3.3 Firearms Discharge Residue 57

3.3.1 Firearms Discharge Residue Sampling 57

3.3.2 Firearms Discharge Residue Presumptive Tests 58

3.4 Explosives 59

3.4.1 Explosive Residue Sampling 60

3.4.2 Explosive Residue Presumptive Tests 60

3.4.2.1 Colour Tests 60

3.4.2.2 Thin Layer Chromatography 61

3.4.2.3 Portable Instruments 61

3.5 Ethanol (Ethyl Alcohol) 61

3.5.1 Breath Alcohol Testing 61

3.5.1.1 Electronic Devices 62

3.5.1.2 Chemical Test Devices 63

3.5.2 Saliva-Based Testing 63

3.6 Ignitable Liquid Residues 64

3.7 Non-Chemical Presumptive Tests 65

3.7.1 Electronic Detectors 65

3.7.1.1 Electronic Detectors for Fire Investigations 65

3.7.1.2 Electronic Detectors for Explosives and Illicit Drugs 66

3.7.2 Canine Detection 67

References 68

4 Sample Preparation 71
Sue Jickells

4.1 Sample Preparation 71

4.2 Extraction 75

4.2.1 Solvent Extraction 76

4.2.2 Liquid–Liquid Extraction 77

4.2.3 Solid Phase Extraction 82

4.2.3.1 Stationary Phases 85

4.2.3.2 Normal Phase 92

4.2.3.3 Reversed Phase 93

4.2.3.4 Ion Exchange 95

4.2.3.5 Molecularly Imprinted Polymers 95

4.2.3.6 Immunoaffinity SPE 97

4.2.4 Solid-Phase Microextraction 97

4.2.5 QuEChERS 101

4.2.6 Sample Handling Post Extraction 101

4.2.6.1 Solvent Evaporation 101

4.2.6.2 Derivatisation 102

4.3 Sample Preparation for Inorganic Analyses 102

4.3.1 Total Analysis 103

4.3.2 Chemical Speciation 105

4.4 DNA Profiling 105

4.5 Conclusion 106

References 106

Part II Spectroscopic and Spectrometric Techniques 109

5 The Electromagnetic Spectrum 111
Rosalind Wolstenholme

Reference 114

6 Ultraviolet–Visible and Fluorescence Spectroscopy 115
Rosalind Wolstenholme

6.1 Forensic Introduction 115

6.2 Theory 115

6.2.1 Electronic Transitions 115

6.2.2 Photoluminescence and Fluorescence 118

6.2.3 Quantification 120

6.2.3.1 UV-Vis Quantification 120

6.2.3.2 Fluorescence Quantification 121

6.3 Instrumentation 122

6.3.1 UV-Vis Spectrometers 122

6.3.2 Fluorescence Spectrometers/Fluorometers 123

6.3.3 Coupling Techniques 126

6.3.4 Microspectrophotometers 126

6.3.5 Hyperspectral Imaging 126

6.3.6 Filtered Light Examination 127

6.4 Application to Analyte 128

6.4.1 Transmission Analysis in Solution 128

6.4.1.1 UV-Vis Solution Analysis 128

6.4.1.2 Fluorescent Solution Analysis 129

6.4.2 MSP Sample Preparation 129

6.4.3 Acquiring a Spectrum 130

6.4.3.1 Capture of Spectra in Solution 130

6.4.3.2 MSP and HSI Sample Analysis 131

6.4.4 Forensic Applications 131

6.4.4.1 Writing Ink Examination 132

6.4.4.2 Fibre Examination 133

6.5 Interpretation and Law 134

6.5.1 Interpreting UV-Vis Spectra 135

6.5.2 Interpreting Fluorescence Spectra 137

6.5.3 UV-Vis and Fluorescence Spectroscopy in Court 138

6.6 Case Studies 138

6.6.1 Case Study 1 138

6.6.2 Case Study 2 139

6.7 Forensic Developments 140

References 140

7 Infrared Spectroscopy 145
Barbara Stuart

7.1 Introduction 145

7.2 Theory of the Technique 145

7.2.1 Basis of the Technique 145

7.2.2 Instrumentation 146

7.2.3 Transmission Spectroscopy 148

7.2.4 Reflectance Spectroscopy 148

7.2.5 Infrared Microspectroscopy 150

7.2.6 Handheld and Portable Instruments 151

7.3 Application to Analyte 151

7.3.1 Sampling 151

7.3.2 Spectrum Analysis 152

7.4 Interpretation and Law 155

7.5 Case Studies – Discrimination of Acrylic Fibres 157

7.6 Forensic Developments 158

References 159

8 Raman Spectroscopy 161
Rosalind Wolstenholme

8.1 Forensic Introduction 161

8.2 Theory 161

8.2.1 Raman Scattering 161

8.2.2 Modes of Vibration 163

8.2.3 Raman Shift 165

8.2.4 Raman Instrumentation 166

8.2.4.1 Lasers, Fluorescence, and Resolution 166

8.2.4.2 Dispersive versus FT 167

8.2.4.3 Dispersive Raman Spectrometers 168

8.2.4.4 FT-Raman Spectrometers 169

8.2.4.5 Polarisers 169

8.2.4.6 Microscopes and Imaging 169

8.2.4.7 Portable Instruments and Probes 170

8.2.4.8 Quantitation 170

8.2.5 Advanced Techniques 171

8.2.5.1 Resonance Raman Spectroscopy 171

8.2.5.2 SERS/SERRS 171

8.2.5.3 SORS 172

8.2.6 Advantages and Disadvantages of Raman Spectroscopy 173

8.3 Application to Analyte 174

8.3.1 Acquiring a Spectrum 174

8.3.2 Forensic Applications 175

8.3.2.1 Pen Ink 175

8.3.2.2 Paint 175

8.3.2.3 Drugs of Abuse 176

8.4 Interpretation and Law 177

8.4.1 Interpreting Raman Spectra 177

8.4.2 Raman Spectroscopy in Court 179

8.5 Case Studies 180

8.5.1 Case Study 1 180

8.5.2 Case Study 2 180

8.6 Forensic Developments 181

References 181

9 Scanning Electron Microscopy 185
Grzegorz Zadora and Aleksandra Michalska

9.1 Introduction 185

9.2 Theory of the Technique 186

9.2.1 Scanning Electron Microscope 186

9.2.2 X-Ray Detection 191

9.2.3 Operating Conditions 192

9.2.4 Specimen Preparation 193

9.2.4.1 Vacuum Evaporation 194

9.3 Application to Analyte(s) 195

9.3.1 Gunshot Residue 196

9.3.2 Glass 200

9.3.3 Other Samples 203

9.4 Interpretation and Law 203

9.4.1 Evidence Evaluation on Source Level 203

9.4.2 Evidence Evaluation on Activity Level 206

9.5 Case Study 207

9.5.1 GSR – Case Study 207

9.5.2 Glass – Comparison and Classification Problem 209

9.5.3 Glass –Was the Car Bulb Switched on During the Accident? 212

References 214

10 Mass Spectrometry 219
Mark C. Parkin and Alan Brailsford

10.1 Introduction 219

10.1.1 Forensic Application of Mass Spectrometry 221

10.2 Theory of the Technique 223

10.2.1 Principles of Mass Spectrometry 223

10.2.2 Sample Introduction 224

10.2.3 Modes of Sample Ionisation 225

10.2.3.1 Electron Ionisation 225

10.2.3.2 Chemical Ionisation 227

10.2.3.3 Electrospray Ionisation 230

10.2.3.4 Atmospheric Pressure Chemical Ionisation 231

10.2.3.5 Desorption and Ambient Methods 232

10.2.3.6 Matrix-Assisted Laser Desorption/Ionisation 232

10.2.3.7 Secondary Ion Mass Spectrometry 234

10.2.3.8 Desorption Electrospray Ionisation 234

10.2.3.9 Direct Analysis in Real Time 234

10.2.4 Ion Separation – Mass Analysers 235

10.2.4.1 Mass Range, Resolution and Accuracy 235

10.2.4.2 Magnetic Sector 236

10.2.4.3 Quadrupoles – Quadrupole Mass Filter 236

10.2.4.4 Quadrupole Ion Trap 237

10.2.4.5 Time of Flight 238

10.2.4.6 Fourier Transform Instruments – Ion Cyclotron Resonance 239

10.2.4.7 Fourier Transform Instruments – Orbitrap 240

10.2.4.8 Tandem Mass Spectrometry – Ion Fragmentation by Collision Induced Dissociation 241

10.2.4.9 Tandem Mass Analysers – Ion Traps 242

10.2.4.10 Tandem Mass Analysers – Triple Quadrupoles 242

10.2.4.11 Tandem Mass Analysers – Hybrid Instruments 242

10.2.5 Ion Detection 243

10.2.5.1 Electron Multipliers 243

10.2.5.2 Faraday Cup 244

10.2.6 Anatomy of a Mass Spectrum 244

10.2.6.1 The Molecular or Quasi-Molecular Ion 245

10.2.6.2 The Fragment Region 247

10.2.6.3 Full Scan Mass Spectra 247

10.2.6.4 Product Ion Spectra 248

10.2.6.5 Extracted Ion Chromatograms 248

10.2.6.6 Selected Ion Chromatograms and Multiple Reaction Monitoring 249

10.2.6.7 Precursor Ion Detection and Neutral Loss Scanning 252

10.3 Application to Analytes 252

10.4 Interpretation and Law 254

10.4.1 Chain of Custody 254

10.4.2 New Forensic Regulations 255

10.4.3 ID Criteria – Screen and Confirmation 255

10.4.4 Chromatographic Criteria 256

10.4.5 Mass Spectrometric Identification Criteria 256

10.5 Case Studies 257

10.5.1 Serial Killing by Poisoning 257

10.5.2 Surreptitious Insulin Administration 257

10.6 Forensic Developments 258

10.6.1 Beyond Blood and Urine 258

10.6.2 High Mass Accuracy Mass Spectrometry 259

10.6.3 Mobile Mass Spectrometers 260

References 261

11 Isotope Ratio Mass Spectrometry 267
Sarah Benson and Kylie Jones

11.1 Forensic Introduction 267

11.2 Basis of the Technique 268

11.2.1 Isotopes 268

11.2.2 Isotopic Abundance and Delta Notation 268

11.2.3 Standards and Reference Materials 269

11.2.4 Isotopic Variability – Fractionation and Mixing 270

11.2.5 Isotopic Variability of Natural Materials 272

11.2.6 Instrumentation: Stable Isotope Ratio Mass Spectrometers 272

11.3 Introduction to the Isotope Ratio Mass Spectrometer 276

11.3.1 IRMS – Detection and Measurement 276

11.3.2 Sample Preparation 277

11.3.3 Bulk Stable Isotope Analysis 277

11.3.4 Bulk Measurements by Quantitative High Temperature Combustion 278

11.3.5 Bulk Measurements by Quantitative High Temperature Conversion 279

11.3.6 Compound Specific Isotope Analysis 279

11.4 Interpretation 280

11.5 Case Studies 281

11.6 Applications in Forensic Science 283

11.6.1 Distinguishing between Naturally Occurring and Synthetic Materials in Doping, e.g. Endogenous and Exogenous (Synthetic) Testosterone 284

11.6.2 Determining Authenticity and Predicting Geographical Origin of Food, Pharmaceuticals and Other Materials, e.g. Counterfeiting 284

11.6.3 Tracing the Geographic Origin and Movement of Wildlife, Persons and Materials 284

11.6.4 Identifying the Source of Environmental Contaminants 285

11.6.5 Determining the Geographical Origin of Plant Materials, e.g. Natural Illicit Drugs – Cannabis, Cocaine, and Heroin 285

11.6.6 Characterising Microorganisms 286

11.6.7 Determining Synthetic Pathways Used to Manufacture Illicit Drugs, e.g. Ecstasy and MDMA, Methamphetamine, and Amphetamine 286

11.6.8 Distinguishing between Two or More Samples of a Material to Infer Source or a Common Origin 287

11.6.9 Distinguishing Between Two or More Samples of Ignitable Liquids and Chemicals 287

11.6.10 Determining Source Through Association of Starting Materials and End Products, e.g. Explosives 288

11.7 Future of IRMS and Stable Isotopic Comparisons 288

References 288

Part III Chromatographic Techniques 295

12 Chromatographic Separation and Theory 297
Sue Jickells and Shari Forbes

12.1 Introduction 297

12.2 Chromatography 298

12.2.1 Planar Chromatography 299

12.2.2 Column Chromatography 300

12.3 The Separation Process 300

12.3.1 Distribution Constant 303

12.3.2 Hold-Up Time (or Volume) 304

12.3.3 Retention Time (or Volume) 305

12.3.3.1 Retention Time and Sample Concentration 306

12.3.4 Retention Factor 306

12.3.5 Separation Factor 307

12.4 Separation Theory 307

12.4.1 Plate Theory 307

12.4.2 Theory versus Practice: Band Broadening 308

12.4.3 Rate Theory 311

12.4.3.1 Eddy Diffusion (A) 312

12.4.3.2 Longitudinal Diffusion (B) 313

12.4.3.3 Mass Transfer (C) 314

12.4.3.4 Non-Column Parameters Contributing to Band Broadening 316

12.5 Practical Applications of Chromatographic Theory 316

12.5.1 Optimising Chromatographic Separations 317

12.5.1.1 Resolution 317

12.5.1.2 GC 319

12.5.1.3 Mobile Phase 320

12.6 Conclusion 323

References 323

13 Gas Chromatography 327
Shari Forbes

13.1 Introduction 327

13.2 Gas Chromatography Components 327

13.2.1 Mobile Phase System 328

13.2.2 Sample Injection System 329

13.2.2.1 Liquid Samples 330

13.2.2.2 Gases and Volatile Compounds 334

13.2.2.3 Gas Samples 334

13.2.2.4 Volatile Compounds: Headspace Analysis 335

13.2.2.5 Static Headspace Analysis 335

13.2.2.6 Dynamic Headspace Analysis 336

13.2.2.7 Pyrolysis GC 338

13.2.3 Columns and Chromatographic Separation 338

13.2.3.1 Column Selection 340

13.2.3.2 Column Temperature and Programming 341

13.2.4 Detectors and Detection Systems 343

13.2.4.1 Flame Ionisation Detectors 344

13.2.4.2 Electron Capture Detectors 345

13.2.4.3 Nitrogen–Phosphorous Detectors 345

13.2.4.4 Mass Spectrometric Detection Systems 346

13.3 Application to Analyte 348

13.3.1 Sample Derivatisation 348

13.3.2 Qualitative Analysis 350

13.3.3 Quantitative Analysis 351

13.3.3.1 Methods of Quantitative Analysis 353

13.4 Interpretation and Law 354

13.5 Case Studies 356

13.5.1 Case Study 1 356

13.5.2 Case Study 2 357

13.6 Forensic Developments 358

13.6.1 Multidimensional GC 358

13.6.2 Portable GC 361

References 362

14 High Performance Liquid Chromatography and Ultra-High Performance Liquid Chromatography Including Liquid Chromatography–Mass Spectrometry 365
Sophie Turfus and Luke N. Rodda

14.1 Introduction 365

14.2 Components of an HPLC instrument and their Optimisation 368

14.2.1 Pump and Mixer 368

14.2.2 Autosampler and Inlet 370

14.2.3 Injector 370

14.2.4 Column 370

14.2.4.1 Stationary Phase 371

14.2.4.2 Column Dimensions 373

14.2.4.3 Particle Size 373

14.2.4.4 Pre-Column/Guard Column 373

14.2.5 Fittings 374

14.2.6 Mobile Phase 375

14.2.6.1 Mobile Phase A 376

14.2.6.2 Mobile Phase B 376

14.2.7 Effect of Temperature/Flow Rate 379

14.2.8 Detector 380

14.2.8.1 Mass Spectrometer 380

14.2.8.2 UV Detector 382

14.2.8.3 PDA Detector 383

14.3 Related Techniques 384

14.3.1 Ion Chromatography 384

14.3.2 Affinity Chromatography 384

14.3.3 Chiral Chromatography 385

14.4 Chromatography Theory 385

14.5 Detection 386

14.6 Coupling of Liquid Chromatography to Mass Spectrometry 388

14.7 Types of Analytes 390

14.7.1 Basic Analytes 390

14.7.2 Acidic Analytes 390

14.7.3 Proteins 391

14.7.4 DNA 391

14.7.5 Chiral Compounds 392

14.7.6 Bulk Drugs and High-Concentration Analytes 392

14.7.7 Low-Concentration Analytes 392

14.8 Accreditation and Method Validation 393

14.8.1 Use of Internal Standards 393

14.8.2 Effect of Sample Matrix 394

14.8.3 Ion Ratios 394

14.9 Interpretation of Results in the Forensic and Legal Context 394

14.10 Case Studies 396

14.10.1 Case Study 1: Post-Mortem Death Investigation – Poly-Drug Overdose 396

14.10.2 Case Study 2: Post-Mortem Death Investigation – No Derivatisation Needed for LC-MS 397

14.10.3 Case Study 3: Driving Under the Influence of Drugs – Increased Sensitivity with LC-MS 398

14.11 Forensic Developments 399

14.11.1 Column Switching and Two-Dimensional HPLC 399

14.11.2 Capillary Liquid Chromatography 401

14.11.3 Column-on-a-Chip Technologies 401

14.12 Conclusion 402

References 402

15 Capillary and Microchip Electrophoresis 407
Lucas Blanes, Ellen Flávia Moreira Gabriel, Renata Mayumi Saito, Wendell Karlos Tomazelli Coltro, Nerida Cole, Philip Doble, Claude Roux and Robson Oliveira dos Santos

15.1 Capillary Electrophoresis: Introduction 407

15.2 Microchip-Capillary Electrophoresis 410

15.2.1 Sample Injection Modes in ME 410

15.3 Detection Systems 411

15.4 CE and ME in Forensic Analysis 412

15.5 Case Study: Lab-on-a-Chip Screening of Methamphetamine and Pseudoephedrine in Clandestine Laboratory Samples 412

15.5.1 Screening of Methamphetamine and Pseudoephedrine from Clandestine Laboratories 416

15.5.2 Interferents 416

15.5.3 Simulated Surface Swabs 418

15.6 Conclusions 418

Acknowledgements 419

References 419

Index 425

Erscheinungsdatum
Verlagsort New York
Sprache englisch
Maße 175 x 244 mm
Gewicht 1043 g
Themenwelt Naturwissenschaften Biologie
Naturwissenschaften Chemie Analytische Chemie
ISBN-10 1-119-97828-9 / 1119978289
ISBN-13 978-1-119-97828-2 / 9781119978282
Zustand Neuware
Informationen gemäß Produktsicherheitsverordnung (GPSR)
Haben Sie eine Frage zum Produkt?
Mehr entdecken
aus dem Bereich
Daten, Formeln, Übungsaufgaben

von Friedrich W. Küster; Alfred Thiel; Andreas Seubert

Buch | Softcover (2023)
De Gruyter (Verlag)
54,95