Emerging Eco-friendly Green Technologies for Wastewater Treatment -

Emerging Eco-friendly Green Technologies for Wastewater Treatment (eBook)

Ram Naresh Bharagava (Herausgeber)

eBook Download: PDF
2020 | 1st ed. 2020
XIX, 351 Seiten
Springer Singapore (Verlag)
978-981-15-1390-9 (ISBN)
Systemvoraussetzungen
223,63 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

As we know, rapid industrialization is a serious concern in the context of a healthy environment and public health due to the generation of huge volumes of toxic wastewater. Although various physico-chemical and biological approaches are available for the treatment of this wastewater, many of them are not effective. Now, there a number of emerging ecofriendly, cost-effective approaches utilizing microorganisms (bacterial/fungi/algae), green plants or their enzymes, and constructed wetland treatment systems in the treatment of wastewaters containing pollutants such as endocrine disrupting chemicals, toxic metals, pesticides, dyes, petroleum hydrocarbons and phenolic compounds.

This book provides a much-needed, comprehensive overview of the various types of wastewater and their ecotoxicological effects on the environment, humans, animals and plants as well as various emerging and eco-friendly approaches for their treatment. It provides insights into the ecological problems and challenges in the treatment and management of wastewaters generated by various sources.

Ram Naresh Bharagava is an Assistant Professor in Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, Uttar Pradesh, India. He earned B.Sc. in Biology from University of Lucknow, Lucknow and M.Sc. in Molecular Biology and Biotechnology from Govind Ballabh Pant University of Agriculture & Technology (GBPUAT), Pantnagar, Uttarakhand (U.K.), India. He did Ph.D in Microbiology from Indian Institute of Toxicology Research (CSIR-IITR), Lucknow and Pt. Ravishankar Shukla University, Raipur, Chhattisgarh, India. He published one author book and eight edited books and more than 140 research items in National and International journal of repute. His major thrust areas of research are Biodegradation and Bioremediation of Environmental Pollutants, Metagenomics and Wastewater Microbiology. He is life member of the Indian Science Congress Association (ISCA), India, Association of Microbiologists of India (AMI), Biotech Research Society (BRSI), and Academy of Environmental Biology (AEB). 


As we know, rapid industrialization is a serious concern in the context of a healthy environment and public health due to the generation of huge volumes of toxic wastewater. Although various physico-chemical and biological approaches are available for the treatment of this wastewater, many of them are not effective. Now, there a number of emerging ecofriendly, cost-effective approaches utilizing microorganisms (bacterial/fungi/algae), green plants or their enzymes, and constructed wetland treatment systems in the treatment of wastewaters containing pollutants such as endocrine disrupting chemicals, toxic metals, pesticides, dyes, petroleum hydrocarbons and phenolic compounds. This book provides a much-needed, comprehensive overview of the various types of wastewater and their ecotoxicological effects on the environment, humans, animals and plants as well as various emerging and eco-friendly approaches for their treatment. It provides insights into the ecological problems and challenges in the treatment and management of wastewaters generated by various sources.

Preface 7
Acknowledgements 9
Contents 10
About the Series Editor 12
Editor and Contributors 13
About the Editor 13
Contributors 13
Chapter 1: Green Technologies for the Treatment of Pharmaceutical Contaminants in Wastewaters 18
1.1 Introduction 19
1.2 Occurrence of Pharmaceuticals Worldwide 20
1.3 Ecotoxicological Effects 26
1.4 Alternative Treatments 29
1.4.1 Microalgal 29
1.4.2 Advanced Oxidation Processes (AOP) 30
1.4.3 Adsorption 31
1.4.4 Enzymatic Bioreactor 32
1.5 Conclusion 33
References 33
Chapter 2: Constructed Wetlands: An Emerging Green Technology for the Treatment of Industrial Wastewaters 38
2.1 Introduction 39
2.2 Current Scenario About Constructed Wetland Treating Industrial Wastewater 40
2.3 Constructed Wetland Classifications 43
2.3.1 Surface Water Flow CW (SCW) 43
2.3.2 Subsurface Flow CW (SSCW) 43
2.3.2.1 Horizontal Subsurface Flow CW (HSSCW) 46
2.3.2.2 Vertical Subsurface Flow CW (VSSCW) 47
2.3.3 Hybrid Constructed Wetlands (HCW) 47
2.3.4 Advanced CWs 48
2.4 Factors Influencing the Treatment of Industrial Wastewaters by CW 48
2.4.1 Organic Loading 48
2.4.2 Clogging 49
2.4.3 pH 49
2.4.4 Temperature 50
2.5 Pollutant Removal and Operation and Maintenance for CW Treating Industrial Wastewater 50
2.6 Economical Consideration of CW for Treating Industrial Wastewater 53
2.7 Future Consideration 55
2.8 Summary and Conclusion 55
References 56
Chapter 3: Application of Nanoparticles in Environmental Cleanup: Production, Potential Risks and Solutions 62
3.1 Introduction 63
3.2 A Brief Description of Nanoparticles 65
3.3 Applications of Nanotechnology for Remediation and the Mechanisms 66
3.4 Common Groups of Nanomaterials Used for Remediation 78
3.4.1 Nano Zero-Valent Irons 78
3.4.2 Carbon Nanotubes 80
3.4.3 Zeolites 80
3.4.4 Metal Oxides 82
3.5 Risks of Nanotechnology Application: Cases and Management 82
3.6 Conclusions 84
References 86
Chapter 4: Efficiency of Algae for Heavy Metal Removal, Bioenergy Production, and Carbon Sequestration 94
4.1 Introduction 95
4.2 Sources of Heavy Metals 95
4.3 Toxicity of Heavy Metals 97
4.3.1 Toxicity of Heavy Metals to Animals 98
4.3.2 Toxicity of Heavy Metals to Plants 100
4.4 Remediation of Heavy Metals from Water and Wastewater 101
4.5 Phycoremediation 102
4.5.1 Factors Influencing Phycoremediation 104
4.5.1.1 Effect of pH 104
4.5.1.2 Effect of Temperature 106
4.5.1.3 Effect of Contact Time 106
4.5.1.4 Effect of Biomass Concentration 106
4.5.1.5 Effect of Metal Ion Concentration 107
4.6 Carbon Sequestration Potential of Algae 107
4.7 Bioenergy Production by Algae 108
4.8 Conclusion 110
References 111
Chapter 5: Advances in Plant–Microbe-Based Remediation Approaches for Environmental Cleanup 119
5.1 Environmental Pollution and Its Effect on Organisms: An Overview 120
5.2 Remediation Strategies for Environmental Cleanup 122
5.3 Physicochemical Approaches 122
5.3.1 Replacement and Treatment of Contaminated Soil 122
5.3.2 Soil Washing 122
5.3.3 Solidification and Stabilization 123
5.3.4 Vacuum Extraction 123
5.3.5 Chemical Decontamination 124
5.3.6 Electro-Kinetic Method 124
5.3.7 Thermal Methods 125
5.3.8 Biological Methods 125
5.3.8.1 Bioremediation 125
5.3.8.2 Phytoremediation 126
5.4 Plant–Microbe Partnership for Improved Remediation of Pollutants 127
5.5 Transgenic Technology for Enhanced Phytoremediation 130
5.6 Nanotechnology to Enhance the Efficiency of Phyto-bio Remediation 133
5.7 Conclusions 135
References 137
Chapter 6: Bioprocessing of Cane Molasses to Produce Ethanol and Its Derived Products from South Indian Distillery 145
6.1 Ethanol 146
6.2 Ethanol in India 147
6.3 Ethanol Production in South Indian Distilleries 148
6.3.1 Feed Preparation 148
6.3.2 Fermentation of Sugars by Yeast: Ethanol Production 149
6.3.3 Distillation Process 149
6.3.3.1 Rectified Spirit 149
6.3.3.2 Neutral Spirit or Neutral Alcohol 151
6.3.4 Dehydration of Ethanol 152
6.3.4.1 Azeotropic Distillation 153
6.3.4.2 Molecular Sieve Technology 153
6.4 Derived Products from Ethanol 154
6.4.1 Acetaldehyde 154
6.4.2 Acetic Acid 154
6.4.3 Ethyl Acetate 155
6.5 Uses of Ethanol 156
6.6 Wastewater Generation from Ethanol Production and Its Treatment Practices 156
6.6.1 Anaerobic Digestion 158
6.6.2 Reverse Osmosis 158
6.6.3 Biocomposting 159
6.7 Concluding Remarks 160
References 160
Chapter 7: Biological and Nonbiological Approaches for Treatment of Cr(VI) in Tannery Effluent 162
7.1 Introduction 163
7.2 Production and Properties of Tannery Effluent 165
7.3 Environmental Pollution and Health Hazards of Tannery Effluent 166
7.4 Cr(VI) as a Major Pollutant in Tannery Effluent 166
7.4.1 Impact of Chromium Compounds on Environment 167
7.4.2 Health Hazards of Chromium Compounds 168
7.5 Nonbiological Methodologies for Effluent Remediation 169
7.5.1 Chemical Precipitation 169
7.5.2 Ion Exchange 170
7.5.3 Reverse Osmosis 171
7.5.4 In Situ Chemical Sorption 171
7.5.5 Electrochemical Technique 172
7.6 Biological Methodologies for Effluent Remediation 172
7.6.1 Bacterial Removal of Chromate Ions 173
7.6.1.1 Bacterial Biomass Used for Bulk Removal of Metal Ions 174
7.6.2 Fungal and Yeast Removal of Chromate Ions 175
7.6.3 Algal Removal of Chromate Ions 176
7.6.4 Phytoremediation of Chromate Ions 177
7.7 Emerging Trends and Future Prospects 178
7.8 Conclusion 179
References 179
Chapter 8: Photocatalysis as a Clean Technology for the Degradation of Petrochemical Pollutants 186
8.1 Introduction 186
8.2 Petrochemical Pollutants 187
8.3 Diversity of Petrochemical Pollutants 188
8.3.1 Petrochemicals from Downstream Products 189
8.3.1.1 Downstream Petrochemical Products from Methane 189
8.3.1.2 Downstream Petrochemical Products from Ethylene 190
8.3.1.3 Down-Stream Petrochemical Products from Benzene 190
8.3.1.4 Down-Stream Petrochemical Products from Other Primary Compounds 190
8.4 Treatment of Wastewater and Petrochemical Pollutants 191
8.4.1 Treatment of Wastewater Pollutants 192
8.4.2 Treatment of Petrochemical Pollutants 194
8.5 Advance Methods for the Treatment of Petrochemical Pollutants 195
8.5.1 Advanced Oxidation Processes 195
8.5.2 Photocatalytic Degradation of Organic Pollutants 196
8.5.2.1 Photocatalysis as a Clean Technology 200
8.5.2.2 Photocatalysis as a Green Technology 200
8.6 Challenges in Treatment of Petrochemical Pollutants 201
8.7 Conclusion 202
References 203
Chapter 9: Sustainable Management of Toxic Industrial Effluent of Coal-Based Power Plants 207
9.1 Introduction 207
9.1.1 Generation and Composition of Coke Wastewater 209
9.1.2 Sampling of Wastewater 211
9.1.3 Toxic Nature of Wastewater 211
9.2 Conventional Treatment Methods 212
9.2.1 Physiochemical Methods 212
9.2.2 Biological Treatment 214
9.2.2.1 Single-Step Activated Sludge Process 214
9.2.2.2 Multistep Activated Sludge Process 214
9.2.2.3 Activated Sludge in Sequential Batch Reactor 215
9.2.2.4 Fixed Biofilm-Based Treatment 216
9.2.2.5 Biological Aerated Filters-Based Treatment 217
9.2.2.6 Fluidized-Bed Reactor-Based Treatment 217
9.2.2.7 Bioaugmentation-Based Treatment 218
9.3 Integrated Treatment Approach 219
9.3.1 Membrane Bioreactor Followed by Biological Treatment 219
9.3.2 ASP Integrated with Chemical Pre-treatment 219
9.4 Extraction Value Added Products from the Coking Wastewater 220
9.5 Membrane Separation Technology for the Treatment of Coking Wastewater 224
9.6 Reclamation of Wastewater Using Novel Forward Osmosis-Nano Filtration (FO-NF) System 225
9.7 Membrane-Based Hybrid Treatment System 227
9.8 Conclusions 227
References 229
Chapter 10: Removal of Organic Pollutants from Contaminated Water Bodies by Using Aquatic Macrophytes Coupled with Bioenergy Production and Carbon Sequestration 234
10.1 Introduction 235
10.2 Types of Contaminates Present in Aquatic Ecosystems 236
10.3 Sources of Organic Pollution 237
10.4 Toxicity of Organic Pollution to Plants and Animals 238
10.5 Abundance and Ecology of Aquatic Macrophytes 239
10.6 Removal of Organic Contaminants 240
10.7 Phytoremediation of Organic Pollutants Using Aquatic Macrophytes 241
10.8 Factors Affecting Phytoremediation of Organic Contaminants by Using Macrophytes 243
10.8.1 pH of Growing Medium 245
10.8.2 Temperature 246
10.8.3 Plant Species 247
10.9 Carbon Sequestration Potential of Macrophytes 247
10.10 Biofuel Production by Macrophytes 249
10.11 Conclusion 251
References 251
Chapter 11: Biopolymers and Their Application in Wastewater Treatment 258
11.1 Introduction 259
11.2 Biopolymers and Their Classification 260
11.3 Mechanism of Action of Biopolymers for Wastewater Treatment 260
11.3.1 By Bridge Formation 260
11.3.2 By Electrostatic Patch 262
11.3.3 By Adsorption 262
11.3.4 By Coagulation/Flocculation 263
11.4 Effect of Factors on Efficacy of Biopolymers 263
11.4.1 Effect of pH 263
11.4.2 Effect of Size 264
11.4.3 Effect of Dose of Biopolymers 265
11.4.4 Effect of Contact Time 265
11.4.5 Effect of Temperature 265
11.5 Biopolymers for Wastewater Treatment 265
11.5.1 Chitosan 266
11.5.2 Cellulose 268
11.5.3 Alginates 270
11.5.4 Gum and Mucilage 270
11.5.5 Tannin 272
11.6 Advantages and Current Challenges 273
11.7 Conclusion 274
References 275
Chapter 12: Recovery of Rare Earths, Precious Metals and Bioreduction of Toxic Metals from Wastewater Using Algae 280
12.1 Background 281
12.2 Toxicity of Heavy Metals 282
12.2.1 Thallium Toxicity 282
12.2.2 Cadmium Toxicity 283
12.2.3 Chromium Toxicity 284
12.3 Precious Metals and Rare Earth Elements 285
12.3.1 Gold 285
12.3.2 Lanthanum 287
12.4 Bioremediation Technologies 288
12.4.1 Phytoremediation 288
12.4.2 Bio-adsorption 290
12.4.2.1 Mechanisms in Bio-adsorption Processes 291
12.4.2.2 Microalgae as Sorbents for Heavy Metals 293
12.4.2.3 Immobilisation of Microalgal Cells 294
12.5 Bioflocculation 295
12.5.1 Algal-Bacterial Bioflocculation 295
12.5.2 Algal-Fungal Bioflocculation 296
12.5.3 Algal-Algal Bioflocculation 296
12.6 Bio-recovery of Precious Metals and Rare Earths 297
12.6.1 Gold Recovery 297
12.6.2 Chromium Recovery 299
12.7 Conclusion 299
References 301
Chapter 13: Green Synthesized Nanoparticle-Mediated Wastewater Treatment 311
13.1 Introduction 312
13.2 Green Synthesis of Nanoparticles 313
13.3 Use of Various Green Synthesized Nanoparticles in Wastewater Treatments 316
13.4 Conclusion and Future Prospective 318
References 318
Chapter 14: Microbial Communities in Constructed Wetland Microcosms and Their Role in Treatment of Domestic Wastewater 322
14.1 Introduction 323
14.2 Microorganisms in CWMs and Their Role in Treatment Process 325
14.3 Microbially Mediated Reactions in CWMs 327
14.4 Seasonal Variability Among Microbial Communities with Respect to Macrophytes 328
14.5 Enzyme Activity 329
14.6 Effect of Temperature on Microbial Activity 332
14.7 Effect of DO on Microbial Activity 332
14.8 Conclusion 333
References 333
Chapter 15: Agricultural Waste: Its Impact on Environment and Management Approaches 339
15.1 Introduction 340
15.1.1 Scenario of Waste Collection in India 341
15.1.2 Types of Waste 341
15.1.3 Classification of Waste 341
15.1.3.1 According to Physical Condition (Properties) 341
Solid Waste 341
Liquid Waste 341
15.1.3.2 According to Their Properties 344
Biodegradable Wastes 344
Non-biodegradable Wastes 344
15.1.3.3 According to Their Effect on Human Health and Environment 344
Hazardous Waste 344
Nonhazardous 344
15.1.3.4 According to Their Origin 345
Nuclear Waste 345
Thermal Waste 345
Plastic Waste 345
Biomedical Waste 345
E-Waste 346
15.1.3.5 According to Reuse of Wastes 346
Reusable/Recyclable Waste 346
Nonreusable Waste 346
15.2 Agriculture Waste 346
15.2.1 Definition 346
15.2.2 Types of Agriculture Waste 347
15.2.2.1 Agriculture Crop Residues 347
Organic Composting from Crop Residue 348
Importance of Crop Residue 348
Biofuel Production from Crop Residue 348
Mineralization Through Crop Residue 348
Efficiency of Nutrient Uptake 349
Composition of Crop Residue Waste 349
15.2.2.2 Waste from Agricultural Livestock 349
Types of Livestock Waste 350
Solid Waste 350
Slurry 350
Importance of Agro-Livestock Waste 351
15.2.2.3 Agro-Industry Waste 352
Waste from Fruit and Vegetable 352
Agricultural Waste Generation 352
15.3 Impact of Agricultural Waste 353
15.3.1 Soil 353
15.3.2 Environment 354
15.3.3 Human Health 355
15.4 Conversion and Utilization of Agricultural Waste 355
15.4.1 Agricultural Waste Improves Soil Fertility 356
15.4.2 Conservation of Paddy Straw Waste Material 356
15.4.3 Utilization of Biogas Plant Waste 357
15.4.4 Utilization of Floricultural Waste Product 357
15.4.5 Conservation of Horticultural Waste Product 357
15.4.6 Uses of Sugarcane Waste Product 358
15.4.7 Conservation of Cotton Waste Material 358
15.5 Summary 358
References 359

Erscheint lt. Verlag 4.3.2020
Reihe/Serie Microorganisms for Sustainability
Zusatzinfo XIX, 351 p. 63 illus., 38 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Biologie Ökologie / Naturschutz
Naturwissenschaften Geowissenschaften
Technik Bauwesen
Technik Elektrotechnik / Energietechnik
Technik Umwelttechnik / Biotechnologie
Schlagworte Ecological and Health Implications • Environmental Contaminants • sustainable development • WASTEWATERS • Wastewater Treatment Approaches • Water Quality and Water Pollution
ISBN-10 981-15-1390-2 / 9811513902
ISBN-13 978-981-15-1390-9 / 9789811513909
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,5 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich