Thermophysical Properties and Measuring Technique of Ge-Sb-Te Alloys for Phase Change Memory - Rui Lan

Thermophysical Properties and Measuring Technique of Ge-Sb-Te Alloys for Phase Change Memory (eBook)

(Autor)

eBook Download: PDF
2020 | 1st ed. 2020
XI, 139 Seiten
Springer Singapore (Verlag)
978-981-15-2217-8 (ISBN)
Systemvoraussetzungen
96,29 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen
This book focuses on the thermophysical properties of Ge-Sb-Te alloys, which are the most widely used phase change materials, and the technique for measuring them. Describing the measuring procedure and parameter calibration in detail, it provides readers with an accurate method for determining the thermophysical properties of phase change materials and other related materials. Further, it discusses combining thermal and electrical conductivity data to analyze the conduction mechanism, allowing readers to gain an understanding of phase change materials and PCM industry simulation.

Ms. Rui Lan received the B.S. degree from Department of Material Science and Technology, Dalian University of Technology, Dalian, China in 2005, the M.S. and Ph.D. degrees from Department of Metallurgy and Ceramics Sciences, Tokyo Institute of Technology (TITECH), Japan in 2009 and 2012, respectively. Since 2013, she has been an Associate Professor at Department of Material Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China. Her research interests include Phase change storage materials, thermoelectric thin film materials, high-entropy alloy coating and semiconductor materials.


This book focuses on the thermophysical properties of Ge-Sb-Te alloys, which are the most widely used phase change materials, and the technique for measuring them. Describing the measuring procedure and parameter calibration in detail, it provides readers with an accurate method for determining the thermophysical properties of phase change materials and other related materials. Further, it discusses combining thermal and electrical conductivity data to analyze the conduction mechanism, allowing readers to gain an understanding of phase change materials and PCM industry simulation.

Preface 5
Contents 7
About the Author 10
1 Introduction 11
1.1 Background 11
1.2 Thermal Conductivity Theory 16
1.2.1 Electronic Thermal Conductivity (?e) 16
1.2.2 Phonon Thermal Conductivity 19
1.2.3 Other Mechanisms 20
1.3 Previous Studies on Ge–Sb–Te Alloy System 21
1.3.1 Phase Diagram 21
1.3.2 Crystallographic Structure 24
1.3.3 Electrical Resistivity 26
1.3.4 Thermal Conductivity 28
1.3.5 Optical Properties 28
References 29
2 Establishment of the Hot-Strip Method for Thermal Conductivity Measurements of Ge–Sb–Te Alloys 32
2.1 Introduction 32
2.2 Establishment of Hot-Strip Method 34
2.2.1 Principle 34
2.2.2 Measurement Setup Modifications 35
2.2.3 Parameters ? and R0 Optimization 38
2.3 Sample and Experiment Procedure 41
2.4 Reliability Verification of the Hot-Strip Method 42
2.5 Application of the Hot-Strip Method to Ge–Sb–Te Alloys 44
2.5.1 Characterization of Sb2Te3 Alloys Before and After Measurements 44
2.5.2 Thermal Conductivity Results of Sb2Te3 Alloy 45
2.6 Uncertainty in Thermal Conductivity Measurement of Sb2Te3 Alloy 49
2.6.1 Uncertainty in Current (I) 49
2.6.2 Uncertainty in  ?R?? , XT and  d?Vdlnt 49
2.6.3 Uncertainty in Distance Between Potential Terminals (l) 51
2.6.4 Sensitivity Coefficients 51
2.6.5 Combined Standard Uncertainty 51
2.7 Conclusions 52
References 52
3 Thermal Conductivities of Ge–Sb–Te Alloys 54
3.1 Introduction 54
3.2 Sample and Experimental Procedure 56
3.3 Characterization of Sb–Te and GeTe–Sb2Te3 Alloys 58
3.3.1 Characterization of Sb–Te Alloys 58
3.3.2 Characterization of GeTe–Sb2Te3 Alloys 62
3.4 Thermal Conductivities of Sb–Te and GeTe–Sb2Te3 Alloys 64
3.4.1 Thermal Conductivities of Sb–Te Alloys 64
3.4.2 Thermal Conductivities of GeTe–Sb2Te3 Pseudobinary Alloys 68
3.5 Uncertainty in Thermal Conductivity Measurements of Ge–Sb–Te Alloys 72
3.5.1 Uncertainty in Current (I) 72
3.5.2 Uncertainty in  ?R?? , XT and  d?Vdlnt 74
3.5.3 Uncertainty in Distance Between Potential Terminals (l) 74
3.5.4 Sensitivity Coefficients 74
3.5.5 Combined Standard Uncertainty 75
3.6 Comparison with Reported Data 75
3.7 Conclusions 76
References 77
4 Electrical Resistivities of Ge–Sb–Te Alloys 79
4.1 Introduction 79
4.2 Experimental 81
4.2.1 Sample 81
4.2.2 Four-Terminal Method 83
4.2.3 Measurement Setup and Procedure 83
4.3 Characterization of GeTe–Sb2Te3 Alloys 86
4.4 Electrical Resistivities of GeTe–Sb2Te3 Alloys 88
4.5 Uncertainty in Electrical Resistivity Measurements of GeTe–Sb2Te3 Pseudobinary Alloys 92
4.5.1 Uncertainty in Resistance (R) 92
4.5.2 Uncertainty in Diameter of Sample (d) 92
4.5.3 Uncertainty in Distance Between Inner Electrodes (l) 94
4.5.4 Sensitivity Coefficients 94
4.5.5 Combined Standard Uncertainty 95
4.6 Comparison with Reported Data 95
4.7 Conclusions 96
References 97
5 Thermal Conduction Mechanisms and Prediction Equations of Thermal Conductivity for Ge–Sb–Te Alloys 99
5.1 Introduction 99
5.2 Thermal Conduction Mechanisms 100
5.2.1 Structural Similarity 100
5.2.2 Sb–Te Binary Alloys 102
5.2.3 Ternary GeTe–Sb2Te3 Pseudobinary Alloys 109
5.2.4 GeTe Alloy 115
5.3 Prediction Equations of Thermal Conductivity 116
5.3.1 Sb–Te Binary Alloys 117
5.3.2 Sb2Te3–GeTe Pseudobinary Alloys 121
5.4 Conclusions 124
References 124
6 Densities of Ge–Sb–Te Alloys 126
6.1 Introduction 126
6.2 Sessile Drop Method 127
6.2.1 Sample 127
6.2.2 Sessile Drop Method 128
6.2.3 Substrate Selection 130
6.2.4 Parameter Calibration 130
6.2.5 Archimedean Method 131
6.3 Density Results 132
6.3.1 Substrate Selection 132
6.3.2 Parameter Calibration 134
6.3.3 Density Results 134
6.4 Discussion 137
6.4.1 Comparison with Reported Data 137
6.4.2 Application Discussion 140
6.5 Conclusions 141
References 141
7 Summary and Conclusions 143

Erscheint lt. Verlag 7.1.2020
Zusatzinfo XI, 139 p. 120 illus., 64 illus. in color.
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Festkörperphysik
Technik Elektrotechnik / Energietechnik
Technik Maschinenbau
Schlagworte Density Measurement • electrical conductivity • Ge-Sb-Te alloys • Measuring technique • phase change materials • Phase change memory • thermal conductivity • Thermophysical properties
ISBN-10 981-15-2217-0 / 9811522170
ISBN-13 978-981-15-2217-8 / 9789811522178
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 7,7 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
Fundamentals and Methods

von Thomas Fauster; Lutz Hammer; Klaus Heinz …

eBook Download (2020)
De Gruyter Oldenbourg (Verlag)
49,95
Concepts, Phenomena, and Applications

von Wim van Saarloos; Vincenzo Vitelli; Zorana Zeravcic

eBook Download (2023)
Princeton University Press (Verlag)
94,99