Measurement of Nonlinear Ultrasonic Characteristics -

Measurement of Nonlinear Ultrasonic Characteristics (eBook)

eBook Download: PDF
2020 | 1st ed. 2020
X, 287 Seiten
Springer Singapore (Verlag)
978-981-15-1461-6 (ISBN)
Systemvoraussetzungen
181,89 inkl. MwSt
  • Download sofort lieferbar
  • Zahlungsarten anzeigen

Conventional ultrasonic methods based on ultrasonic characteristics in the linear elastic region are mainly sensitive to mature defects but are much less responsive to micro-damage or incipient material degradation. Recently, nonlinear ultrasonic characteristics beyond the linear ultrasonic amplitude range have been studied as a method for overcoming this limitation, and hence, many researchers are engaged in theoretical, experimental, and various application studies. However, the nonlinear ultrasonic characteristics are quite exacting compared to the linear phenomena so that they require vast experience and high proficiency in order to obtain proper experimental data. Actually, many researchers, especially beginners including graduate students, have difficulty in reliably measuring nonlinear ultrasonic characteristics. This book provides key technological know-how from experts with years of experience in this field, which will help researchers and engineers to obtain a clear understanding and high quality data in the nonlinear ultrasonic experiments and applications.




Kyung-Young Jhang received his PhD from Tokyo Institute of Technology, Japan in 1991. He is currently a Professor and the Chair of Mechanical Engineering at Hanyang University. His research focuses on the area of linear & nonlinear ultrasonics for NDT&E, laser ultrasonics and laser-material intraction, ultrasonic and optical measurements and signal & image processing. He was Vice-president of Korean Society for NDT and Editor-in-Chief of Journal of the Korean Society for NDT (2012-2017).
Conventional ultrasonic methods based on ultrasonic characteristics in the linear elastic region are mainly sensitive to mature defects but are much less responsive to micro-damage or incipient material degradation. Recently, nonlinear ultrasonic characteristics beyond the linear ultrasonic amplitude range have been studied as a method for overcoming this limitation, and hence, many researchers are engaged in theoretical, experimental, and various application studies. However, the nonlinear ultrasonic characteristics are quite exacting compared to the linear phenomena so that they require vast experience and high proficiency in order to obtain proper experimental data. Actually, many researchers, especially beginners including graduate students, have difficulty in reliably measuring nonlinear ultrasonic characteristics. This book provides key technological know-how from experts with years of experience in this field, whichwill help researchers and engineers to obtain a clear understanding and high quality data in the nonlinear ultrasonic experiments and applications.

Preface 6
Contents 8
1 Overview—Nonlinear Ultrasonic Characteristics 12
References 16
Measurements of Nonlinear Ultrasonic Characteristics Related with Material Elastic Nonlinearity 17
2 Measurement of Nonlinear Ultrasonic Parameters from Higher Harmonics 18
2.1 Higher Harmonic Generation 21
2.2 Nonlinear Ultrasonic Parameters 24
2.3 Measurement of Nonlinear Ultrasonic Parameters 26
2.3.1 Absolute Nonlinear Ultrasonic Parameter (Piezoelectric Method) 26
2.3.2 Relative Nonlinear Ultrasonic Parameter 31
2.3.3 Estimation of Absolute Nonlinear Ultrasonic Parameter by Measurement of Relative Nonlinear Ultrasonic Parameters 33
2.3.4 Measurement Reliability Test 39
2.4 Factors Affecting Measurement Reliability 42
2.4.1 Uncertain Initial Harmonics 43
2.4.2 Couplant Layer 44
2.4.3 Analog-to-Digital Conversion 47
2.4.4 Digital Signal Processing 53
2.5 Application to Assess Thermal Aging in Al Alloy 56
2.6 Associated Methodologies 60
2.6.1 Phase Inversion Technique 60
2.6.2 Pulse-Echo 63
2.6.3 V-Scan 63
2.6.4 Laser-Ultrasonic Surface Acoustic Waves 64
References 66
3 Measurement of Nonlinear Guided Waves 70
3.1 Introduction 71
3.2 Background 72
3.2.1 Linear Guided Wave Propagation 73
3.2.2 Brief History of Nonlinear Guided Waves 74
3.3 Primary Wave Selection for Secondary Wave Generation 76
3.3.1 Basic Principles 77
3.3.2 Theoretical Formulation 77
3.3.3 Self-interaction 82
3.3.4 Mutual Interaction in Plate 87
3.4 Actuation of Primary Waves and Sensing of Secondary Waves 90
3.4.1 Actuation of Lamb Waves 91
3.4.2 Actuation of SH Waves 93
3.4.3 Sensing 94
3.4.4 Effects of Diffraction 94
3.5 Instrumentation and Signal Processing 95
3.5.1 Instrumentation 95
3.5.2 Signal Processing 97
3.6 Measurement Considerations 98
3.6.1 Measurement System Nonlinearities 98
3.6.2 Material Nonlinearities 99
3.6.3 Measuring Progressive Degradation 100
3.7 Closing Comments 113
References 114
Measurements of Nonlinear Ultrasonic Characteristics Related with Contact Acoustic Nonlinearity 118
4 Nonlinear Acoustic Measurements for NDE Applications: Waves Versus Vibrations 119
4.1 Introduction 119
4.2 Fundamental Effect in Nonlinear Acoustics: Higher Harmonic Generation for Longitudinal Acoustic Waves 121
4.2.1 Experimental Validation of Higher Harmonic Characteristics 123
4.3 Nonlinear SAW: Theory 128
4.3.1 Nonlinear Surface Waves: Experimental 130
4.4 Localized Nonlinearity of a Non-bonded Interface 133
4.5 Localized Nonlinearity for Monitoring of Bonding Quality 137
4.5.1 Methodology 138
4.5.2 Specimens 140
4.5.3 Measurement Results 140
4.5.4 Evaluation of Bonding Quality in Realistic Aviation Components 145
4.6 Local Defect Resonance (LDR) and Localized Nonlinearity 147
4.7 Enhancement of Nonlinearity in Various Types of Nonlinear Resonances 152
4.7.1 Super-Harmonic Resonance 152
4.7.2 Combination Frequency Resonance 154
4.7.3 Subharmonic and Parametric Resonances 155
4.8 Linear and Nonlinear LDR for Non-contact Diagnostic Imaging of Defects 159
4.8.1 Experimental Methodology 160
4.8.2 Noncontact LDR Imaging Results 161
4.8.3 Nonlinear LDR Diagnostic Imaging 164
4.9 Conclusions 167
References 170
5 Nonlinear Ultrasonic Phased Array for Measurement of Closed-Crack Depth 173
5.1 Introduction 173
5.2 Subharmonics 180
5.2.1 Principles 181
5.2.2 Experimental Conditions 185
5.2.3 Imaging Results 190
5.3 Parallel and Sequential Transmission 197
5.3.1 Principles 197
5.3.2 Experimental Conditions 203
5.3.3 Imaging Results 205
5.4 All-Elements, Odd-Elements, and Even-Elements Transmission 211
5.4.1 Principles 211
5.4.2 Experimental Conditions 215
5.4.3 Imaging Results 219
5.5 Utilization of Thermal Stress 224
5.5.1 Principles 224
5.5.2 Experimental Conditions 227
5.5.3 Imaging Results 230
5.6 Conclusions 237
References 238
6 Nonlinear Frequency-Mixing Photoacoustic Characterisation of a Crack 243
6.1 Introduction to Nonlinear Photoacoustics 244
6.1.1 An Overview of a Few Non-destructive Methods Combining Laser Optics with Nonlinear Acoustics 245
6.1.2 Generation of Thermoelastic Stresses and Acoustic Waves by Modulation of Continuous Wave Laser Radiation 246
6.1.3 Influence of Stationary Laser Heating on a Crack 249
6.2 Nonlinear Frequency-Mixing Photoacoustic Method for Crack Detection 254
6.2.1 Experimental Setup 254
6.2.2 Principle of the Method 255
6.2.3 One Dimensional Imaging for Crack Localisation 258
6.2.4 Two Dimensional Imaging of a Crack 260
6.2.5 Spatial Resolution of the Crack Images 263
6.3 Towards Quantitative Evaluation of Local Crack Parameters 268
6.3.1 Theoretical Model 269
6.3.2 Evolution of the Nonlinear Sidelobes Amplitude with the Loading 276
6.3.3 Extraction of Crack Parameters 280
6.4 Conclusion 283
References 285
Index 290

Erscheint lt. Verlag 14.1.2020
Reihe/Serie Springer Series in Measurement Science and Technology
Springer Series in Measurement Science and Technology
Zusatzinfo X, 287 p.
Sprache englisch
Themenwelt Naturwissenschaften Physik / Astronomie Mechanik
Technik Maschinenbau
Schlagworte Contact Acoustic Nonlinearity • Elastic Nonlinearity • Higher Harmonic Generation • Nonlinear Frequency Mixing • Nonlinear Frequency-Mixing Photoacoustic • Nonlinear Guided Wave • Nonlinear Imaging of Defects • nonlinear photoacoustics • Nonlinear Ultrasonic Phased Array • Subharmonic Generation • Ultrasonic Nonlinearity
ISBN-10 981-15-1461-5 / 9811514615
ISBN-13 978-981-15-1461-6 / 9789811514616
Haben Sie eine Frage zum Produkt?
PDFPDF (Wasserzeichen)
Größe: 16,2 MB

DRM: Digitales Wasserzeichen
Dieses eBook enthält ein digitales Wasser­zeichen und ist damit für Sie persona­lisiert. Bei einer missbräuch­lichen Weiter­gabe des eBooks an Dritte ist eine Rück­ver­folgung an die Quelle möglich.

Dateiformat: PDF (Portable Document Format)
Mit einem festen Seiten­layout eignet sich die PDF besonders für Fach­bücher mit Spalten, Tabellen und Abbild­ungen. Eine PDF kann auf fast allen Geräten ange­zeigt werden, ist aber für kleine Displays (Smart­phone, eReader) nur einge­schränkt geeignet.

Systemvoraussetzungen:
PC/Mac: Mit einem PC oder Mac können Sie dieses eBook lesen. Sie benötigen dafür einen PDF-Viewer - z.B. den Adobe Reader oder Adobe Digital Editions.
eReader: Dieses eBook kann mit (fast) allen eBook-Readern gelesen werden. Mit dem amazon-Kindle ist es aber nicht kompatibel.
Smartphone/Tablet: Egal ob Apple oder Android, dieses eBook können Sie lesen. Sie benötigen dafür einen PDF-Viewer - z.B. die kostenlose Adobe Digital Editions-App.

Zusätzliches Feature: Online Lesen
Dieses eBook können Sie zusätzlich zum Download auch online im Webbrowser lesen.

Buying eBooks from abroad
For tax law reasons we can sell eBooks just within Germany and Switzerland. Regrettably we cannot fulfill eBook-orders from other countries.

Mehr entdecken
aus dem Bereich
die klassischen Feldtheorien in moderner Darstellung

von Wolfgang H. Müller; Elena N. Vilchevskaya

eBook Download (2024)
Carl Hanser Verlag GmbH & Co. KG
39,99